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Abstract—A common joint source-channel (JSC) decoder struc-
ture for predictively encoded sources involves first forming a JSC
decoding estimate of the prediction residual and then feeding this
estimate to a standard predictive decoding (synthesis) filter. In
this paper, we demonstrate that in a JSC decoding context, use of
this standard filter is suboptimal. In place of the standard filter,
we choose the synthesis filter coefficients to give a least-squares
(LS) estimate of the original source, based on given training data.
For first-order differential pulse-code modulation, this yields as
much as 0.65-dB gain in reconstructing first-order Gauss–Markov
sources. More gains are achieved with modest additional com-
plexity by increasing the filter order. While performance can
also be enhanced by increasing the source’s Markov model order
and/or the decoder’s lookup table memory, complexity grows
exponentially in these parameters. For both predictive and non-
predictive coding, our LS approach offers a strategy for increasing
the estimation accuracy of JSC decoders while retaining manage-
able complexity.

Index Terms—Differential pulse code modulation (DPCM), joint
source-channel (JSC) decoding, least-squares (LS) estimation,
residual redundancy.

I. INTRODUCTION

I N [21], for a differential pulse-code modulation (DPCM)
system, a suboptimal predictor was used, introducing statis-

tical dependencies within the sequence of quantization indexes
output by the DPCM encoder. The authors proposed to exploit
this redundancy at the decoder to improve error resilience in
much the same way that controlled redundancy inserted via
channel coding is exploited. They developed a source-channel
decoder that finds the most likely sequence of transmitted
indexes, given a sequence of noisy received indexes. Their
technique requires that the decoder has access to a simple
model for the quantized source (e.g., a first-order Markov
model) as well as a channel model. It was demonstrated in
[21] that significant error resilience could be achieved by this
approach. Following this paper, there has been substantial
further activity in decoding based on residual redundancy.
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While [21] maximized a sequence-likelihood criterion, [18]
developed a decoder based on maximum a posteriori (MAP)
sequence detection. Both approaches are suboptimal if the true
objective is minimum mean-squared error (MMSE) estimation.
MMSE decoding was also considered in [18], with a more
general MMSE approach developed in [14] and [22]. While
these papers focused on “1-D” signals, i.e., time series, several
papers have developed extensions for digital images [8], [13],
[16]. Some recent research has also focused on systems that
use variable-length encoding (VLC). Approximate decoders
for systems that use Huffman coding have been developed,
e.g., [6] and [15]. Methods for introducing redundancy in
arithmetic-coding systems have also been developed [4], [7],
as well as decoding techniques for these systems, e.g., [17].

While some recent work has developed methods tailored for
VLCs, there is another fundamental coding paradigm that has
not, to date, been optimally accounted for by existing JSC de-
coding methods—predictive coding. The most basic predictive
system, to be addressed in this paper, is DPCM. DPCM is gen-
erally not a competitive lossy compression system on its own.
However, it is often used within more powerful coding frame-
works, e.g., in transform coding of images, for encoding low-
frequency coefficients. Moreover, the predictive quantization
paradigm in DPCM is a fundamental one that appears in many
practical systems and standards, e.g., motion-compensated pre-
diction in video coding. Thus, techniques for enhancing the
error resilience of DPCM may have general applicability to the
applications (in image, video, and speech coding) where predic-
tive quantization is routinely used. Error resilience for DPCM
and more general predictive coding systems has been previously
addressed in several different ways, e.g., by optimizing the pre-
dictor coefficients to enhance robustness [3], by optimizing the
quantizer given knowledge of the noisy channel [1], by con-
ventional forward-error correction techniques, e.g., [20], and by
error-concealment techniques.

Decoding based on residual redundancy has been consid-
ered for DPCM systems in a number of papers [6], [8], [12],
[13], [16], [21]. The predictive setting is arguably the most
appropriate one for exploiting residual redundancy. The most
common cause of residual redundancy is, in fact, suboptimal
encoding of a source with memory. However, if the source
has memory, the most appropriate lossy coding paradigm
is predictive quantization. In all prior techniques exploiting
residual redundancy for DPCM, excepting [12], the following
decoding strategy was taken: form a (JSC decoding) estimate
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Fig. 1. DPCM encoder.

of the encoder’s prediction residual, given the received (noisy)
quantization indexes; and feed this estimate as input to a
standard (noise-free) DPCM decoder (synthesis) filter. We will
refer to this strategy as standard JSC decoding for predictively
encoded sources. Note that the first step does not specify
whether the estimate is obtained using an MMSE decoder [14],
[22] or a MAP-based decoder [18]. Regardless, in this paper,
we will demonstrate that the standard synthesis filter used in the
second step is suboptimal, and that via a simple training-based
technique, one can design a better synthesis filter for JSC
decoding of predictively encoded sources. Moreover, this im-
proved performance can be achieved without any increase in
decoder complexity, relative to that of the standard approach.
Alternatively, additional performance can be achieved with
modest increases in complexity. We will refer to our method as
a “two-stage” estimation approach because it follows a conven-
tional JSC decoding estimator by a (second-stage) least-squares
(LS) filter.

In [12], the suboptimality of standard predictive JSC de-
coding was explicitly asserted. The authors proposed an
alternative decoder, which in some cases, outperforms the stan-
dard decoder. However, as will be discussed in Section II, in
other cases, the decoder proposed in [12] is actually equivalent
to the standard decoder. In Section IV, we will demonstrate
improved performance over the decoder from [12] as well
as over the standard decoder. Beyond the case of predictive
coding, our work suggests a practical approach, in general, to
the fundamental performance/complexity dilemma associated
with JSC decoding techniques—how to effectively increase
the model “order” (and thus, model accuracy) while retaining
practical implementation complexity. This will be discussed in
the following.

In the next section, we review relevant prior work. In Section
III, we develop our new technique for the predictive-coding case
and also discuss its more general applicability. In Section IV, we
give experimental results and comparisons with other decoders.
Finally, the paper concludes with a summary and the identifica-
tion of some future work.

II. PRIOR WORK ON JSC DECODING FOR DPCM

A. Preliminaries

Consider the basic DPCM encoder shown in Fig. 1. The
source sample can be written , where is
the prediction of the current sample based on past quantized
values of the source, e.g., in the first-order case, and

Fig. 2. Communications system model considered in this paper, with DPCM
encoding, transmission over a memoryless channel, and JSC decoding to recover
an estimate of the source.

is the prediction residual.1 The decoder reconstructs the

source via , with the quantized prediction

residual and the prediction of formed at the decoder.
A fundamental law of predictive quantization, e.g., [10], is
that the mean-squared reproduction error is the mean-squared
error (MSE) in quantizing the prediction residual. In order

to achieve this law, the decoder chooses , whereby
. The key here is the use of a

common predictor at the encoder and decoder; otherwise, there
would be an additional distortion term and error propagation.
For the case of first-order DPCM, the decoder’s reconstruction
thus takes the form , with the prediction
coefficient.

Now consider the noisy-channel case. The communications
system model is shown in Fig. 2. For clarity’s sake, we only
consider the memoryless-channel case here. The source en-
coder takes and produces an output index , with

the quantization index set . The index is
transmitted over a discrete channel, resulting in a possibly cor-
rupted index , from the same set , according to the (assumed
constant) channel-transition probabilities .
We define the data source, from a discrete-time random
process, as the sequence , the
encoder’s index sequence , and the
received sequence, . As in prior
work [8], [14], [18], [21], we assume a Markovian model for
the sequence of transmitted indexes, e.g., in the first-order
case,

. All the probabilities

are assumed known at the decoder. In practice, the source prob-
abilities are estimated based on an encoded training set. In the
case of a binary symmetric channel (BSC), the channel is com-
pletely specified by a single parameter, , the channel bit-error
rate (BER). This value could be obtained from measurements.
Alternatively, a robust value could be selected, based on an
assumed distribution for , as, e.g., in [9].

The JSC decoder objective is to produce an approximation
of the source , denoted ,
given a realization of the noisy index sequence,

.2 The knowledge brought to bear by the
decoder consists of the source and channel probability models,
as well as knowledge of the predictor and quantizer used by
the encoder. For clarity’s sake, in the following, we consider
the case of a first-order DPCM encoder. Moreover, solely

1Random variables are denoted by capitals, with the corresponding lower-
case symbols representing their realizations.

2Without knowledge of j, the decoder output ^X is treated as a random
variable. However, the decoding rule is a deterministic function of the received
sequence j. For purpose of retaining compact notation, we do not explicitly
indicate the dependence on j in x̂ .
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for clarity’s sake, it is assumed that knowledge of the entire
received sequence is used for decoding at each sample in-
stant . We refer to this as the “infinite-delay” case.3 While
our explicit development is for the “infinite-delay” case, we
emphasize that our decoder formulation is straightforwardly
specialized for the cases where at each , only the causal
subsequence is used [18], and a noncausal
subsequence is used at each , but with finite delay , i.e.,

[14]. In fact, in our results, we eval-
uate decoders for both the infinite- and finite-delay cases.

B. Decoding Based on Estimating the Prediction Residual

As aforementioned, a common predictive JSC decoding
strategy is to estimate the prediction residual and then feed this
estimate to a standard (noise-free) DPCM decoder filter [6],
[8], [16], [21]. In the case of a sequence MAP strategy [18] for
estimating the residual, one first estimates the transmitted index
sequence via . This is achieved
via the dynamic programming algorithm. The JSC decoding
rule is then

(1)

with the inverse operation to the encoder’s quantiza-
tion, i.e., a table lookup for the quantization level. A reasonable
choice is , i.e., the same
lookup table is used at both the encoder and decoder. In the case
of a sequence-based approximate MMSE (SAMMSE) approach
[14], [16], one first forms a conditional mean estimate of the
prediction residual, denoted , based on the source and
channel models, i.e.,

(2)

where

(3)

and where, again, we choose . The a
posteriori probabilities (APPs) (3) are computed efficiently via
the Forward/Backward algorithm [14], [19]. The decoding rule
is then [16]

(4)

Note that in both (1) and (4), the decoded value consists of
an estimate of the prediction plus an estimate of the
prediction residual. Some heuristic justification for this stan-
dard approach can be obtained, as follows. The ultimate objec-
tive is to choose the value to minimize the MSE

. We can represent as ,

with the prediction produced by the encoder. Further,
without loss of generality, we can represent the decoder’s esti-

3The sequence length T could correspond to the row length of an image or
to the length of a block of samples from a sampled waveform. Blocking may
be performed, e.g., to mitigate signal nonstationarity or to facilitate packetized
transmission.

mate, given , as the sum . Then the
distortion can be written as

(5)

Now, although it is unknown whether it is a reasonable as-
sumption, suppose that the last (cross) term vanishes. Then,
the total expected distortion is just the sum of the distortions
in estimating the prediction4 and in estimating the prediction
residual. The distortion is thus minimized by choosing
and , separately, to minimize their respective distortion
terms. In the absence of other information, the most reasonable
choice for the first term is . Likewise, the
choice minimizes the second term if the
statistical model, on which the expectation is based, is accurate.
Based on these choices, the standard decoder for predictively
encoded sources can be seen to approximately minimize the
distortion .

While the above provides heuristic support for the decoding
rule (4), in this paper, we will demonstrate that this rule is,
in fact, suboptimal and that significant performance improve-
ment can be achieved with no increase in complexity, simply
by choosing different coefficients than and 1 on the respective
terms and . Thus, through the performance of our
new decoder, we will demonstrate that there is suboptimality
stemming from neglecting the last term in and/or from inac-
curacy in the estimates of the prediction residual (due, e.g., to
inaccuracy in the Markov model).

There are several ways to improve the estimate of the pre-
diction residual . One strategy is to increase the order
of the Markov model for . However, the complexity of the
forward and backward recursions needed to calculate the APPs
(3) grows exponentially with the Markov order , i.e., the com-
plexity is . This limits the practical feasibility of
this approach. A second strategy is to use “memory-enhanced”
decoding, as suggested in [14]. This approach is based on the
fact that in deriving the SAMMSE decoder, one approximates

by . Memory-enhanced decoding
uses a higher resolution decoder lookup table and thus obtains
a more accurate conditional mean estimate. We will not derive
this decoder here, but refer the reader to [14]. We simply give the
decoder’s form for the case of second-order (enhanced memory)
decoding

(6)

where . It should be em-
phasized that the decoder memory can be usefully chosen to be
second or higher order irrespective of the order of the Markov
model for .5 Unfortunately, the number of summations in-
creases linearly, and thus, the number of summands exponen-
tially, with the order of the decoder memory. Moreover, the

4This is reflective of the mismatch, now inherent for the noisy channel case,
between the predictions used at the encoder and decoder.

5It is also not necessary for the conditioning context to be causal. It could also
be noncausal, e.g., E[Z jI = m; I = l; I = n].
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complexity of calculating the APPs
also increases exponentially with the decoder memory .

While increasing both the Markov order and the decoder
memory may improve performance, there is a heavy price in
complexity. In the next section, alternatively, we will demon-
strate that the standard JSC decoder for predictive coding can
be improved without any increase in complexity. Before devel-
oping this new approach, we first discuss [12], which attacks
the same problem.

C. Recent Work on JSC Decoding for DPCM

In [12], the authors recognized the suboptimality of existing
systems for the predictive case. They aimed to develop an
improved decoder, directly estimating the source, rather than
the prediction residual. For brevity’s sake, we will not derive
the authors’ decoding rule. We will simply present their rule
and discuss it. The decoder in [12] was developed by assuming
a finite-memory prediction model, i.e., it was assumed that the
current quantized prediction residual is a function of the last

quantization indexes [12]. For DPCM
based on a moving average predictor of length , this is precisely
valid. However, for autoregressive prediction, considered both
here and in [12], this assumption is an approximation. Based
on this assumption, the authors developed and proposed the
following decoding rule for the case of finite delay :

(7)

While (7) as written has complexity growing exponentially in
, we show in the Appendix that this rule can be rewritten in the

simplified form

(8)

This form gives a significant reduction in implementation com-
plexity, so long as . Likewise, for the “infinite-delay”
case, the decoder from [12] [(7) with replaced by ], can be
written in the simplified form

(9)

In the next section, this decoding rule will be discussed in rela-
tion to our new decoder.

In [12], the authors experimentally compared their decoder
with the standard decoding rule

(10)

This is simply (4) with replaced by . In [12], the authors
demonstrated that their decoder outperforms (10) for a high-
order Gauss–Markov (GM) source, with results given for the
case . However, in the Appendix, we show that for
the “infinite-delay” case, the decoder from [12] is actually
equivalent to the standard decoding rule (4). Also in Section IV,

we give experimental results showing, for the same high-order
source, how the performance of (10) and (7) quickly approach
each other as is increased. For a first-order GM source, our
results in Section IV show similar performance for these two
decoders, even for very small . To summarize, the Appendix
and our experiments suggest that the decoder from [12] may
only give improved performance over the standard decoder
in some cases. Alternatively, we next develop a new decoder,
which, in our experiments, outperforms the standard decoder
for both the finite- and infinite-delay cases, for both low- and
high-order GM sources, and does so without any increase
in complexity. Moreover, in the finite-delay case, we will
demonstrate experimentally that our new decoder gives better
performance than [12].

III. NEW JSC DECODER FOR DPCM-ENCODED SOURCES

In JSC decoding, e.g., [14], [18], and [21], the approach
often taken is to assume an optimality criterion (such as MMSE
or MAP) and a statistical model, and then to analytically derive
a closed-form decoder expression. However, as indicated in
Section II-B, it is difficult to give an accurate analytical for-
mulation in the predictive case. Alternatively, we take our cue
from training-based approaches to quantizer design, proposing
a training-based approach to the design of a JSC decoder. The
ultimate performance is the MSE , with the
expectation taken with respect to both the source and channel
distributions. Now, as is often done in practice without proof,
e.g., [5], let us suppose that an ergodicity property holds in our
case, i.e.,

(11)

where we have emphasized the rule’s dependence on
. The motivation behind this is that,

if (11) holds, then one can choose the rule to min-
imize a LS cost based on a large training set and a single
realization of the channel, , with the reasonable expectation
that one is then (approximately) choosing the decoder to
minimize the MSE . A similar approach
was taken in [2] for a different source-coding context and for
optimization at the encoder, not the decoder.6 The reasonable-
ness of our ergodicity assumption will be substantiated by
our experimental results. In particular, it will be seen that the
decoding performance optimized over the training set closely
agrees with the performance on multiple independent test sets.

Thus, from the perspective of a least-squares error (LSE) per-
formance criterion, , we now observe the

6One might wonder why we are emphasizing an ergodicity property here,
since source-coder design for noisy channels is typically based on training sets,
e.g., in channel-optimized vector quantizer (COVQ) design [9]. The difference
is that in COVQ, the decoder is explicitly designed to minimize the expected
distortion over the training set, with the effect of the channel analytically ac-
counted for in the expected distortion expression. This cannot be precisely done
in our case. Thus, we generate a single channel realization and assume an er-
godicity property.
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following: as given in (4) can be viewed as a linear esti-
mator of , based on (what we accordingly now recognize as)
the derived “observations” and . This raises the
question of whether the coefficients are optimal (or nearly
so) in the LS sense, as the weights for these observations.

Consider the more general estimator

(12)

with obtained from the standard decoding rule (4). Sup-
pose (4) is first applied, yielding ,
with the optimal coefficients then sought to weight the values

and in forming a new decoding estimate

. For the given training set
and a realization of the channel ,

we seek the pair optimal, in the LS sense, for combining
the “data observations” and . This is a standard
estimation problem, e.g., [11], with solution given in the form

(13)

based on the “data matrix”

(14)

and with an initial value. Our new approach to JSC de-
coding for predictively encoded sources is to use the LS-optimal
coefficients in the decoding rule (12). Since our new LS-optimal
decoder forms standard JSC decoding values (4) using an as-
sumed statistical model and statistical inferences (APPs) esti-
mated based on the model and then optimally weights, in the
LS sense, these values and the estimated prediction errors, we
refer to our approach as a “two-stage” estimation technique.

Consider an example of a first-order GM process with
correlation coefficient 0.95, quantization levels, a first-
order Markov model for the sequence , and a BSC with
BER . Residual redundancy is introduced by mis-
matching the prediction coefficient, relative to the source corre-
lation. Suppose the prediction coefficient is chosen as .
Experimentally, we have found that this choice leads to good
decoding performance, both for our system and for the standard
JSC decoder [which uses ]. For this choice, we find that
the LS-optimal pair (based on a training set of samples),
is , quite different from the values (0.45,
1) that give the standard rule. Morever, averaged over three test
sets of size 50 000 samples, the reduction in distortion of this
LS-optimal decoder over the standard JSC decoder is
(MSE of standard JSC/MSE of new JSC) dB. Clearly,
the standard JSC rule is not, in general, the optimal way to com-
bine the “observations” and .

Increasing the Filter Order: Even better performance is
achieved by increasing the order of the filter, i.e., forming

(15)

The decoding form in (15) is equivalent to the form in (9) if we
choose . In particular, by using (4) to expand each term

in (15) and then simplifying further, it can be shown that

(16)

The Appendix shows that the decoder (9) is equivalent to the
standard JSC decoder (4). Thus, the difference between the stan-
dard JSC decoder and (16) is just the choice of weights applied
to each of the terms and .
While the standard decoder (4) effectively prescribes the respec-
tive weights , we take a LS, training-based
approach to choosing them. Note also that, rather than choosing
the decoder form (15), we could instead choose the form

(17)

This is explicitly equivalent to (9). Although we do not prove
that LS training of the two models (15) and (17) yields identical
decoders, this is at least plausible.7 To give some additional in-
sight, we have performed LS training for both (15) and (17). We
found that these two forms gave decoded sequences with sam-
ples agreeing up to the third or fourth fractional decimal digit.
The difference may be attributable to finite numerical precision.

Causal and Anticausal Terms: While (15) and (17) only
include the causal terms and

, respectively, our method can also be applied to design a
decoder that uses anticausal terms , with the
potential for additional gains in performance. In particular,
consider the rule

(18)

with the maximum causal lag and the maximum anti-
causal advance.8 The benefit of including these additional terms
in the decoding estimate will be explored in the next section.

LS Decoding for Nonpredictive Systems: In [14] and [18],
JSC decoding was considered for the case of a nonpredictive
encoder (a basic scalar or vector quantizer). In [14], for the
SAMMSE decoder, it was noted that while, in principle, perfor-
mance could be improved by increasing the order of the Markov
model for , this order is generally kept quite small to retain
manageable complexity. Let us denote the SAMMSE decoder
output (based, e.g., on a first-order Markov model for )
by the sequence . One potential consequence
of keeping the order low is that there may be unexploited
partial correlation between the source and both causal

and anticausal

7The LS cost is convex, and (16) demonstrates that (15) and (17) perform
linear filtering using the same set of “observations”.

8The anticausal terms can always be computed when j =
(j ; j ; . . . ; j ). For the finite-delay case where, at time
t; j = (j ; j ; . . . ; j ), they can be computed if � � L .
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terms. This again suggests improving the decoding result via a
two-stage estimation procedure

(19)

with the coefficients again optimized for a LS training-set
cost. Low-order (e.g., ) SAMMSE decoding followed
by the filtering in (19) is much less complex than SAMMSE
decoding based on a high-order Markov model. Thus, this ap-
proach can potentially improve the performance of a low-order
JSC decoder while retaining modest complexity.

IV. EXPERIMENTAL RESULTS

We compared our proposed decoder against: naive DPCM
[ ]; standard JSC decoding (4); and
the decoder from [12]. We also conducted experiments com-
paring our method against SAMMSE decoding [14] for the non-
predictive case.

Predictive Coding Results: We evaluated all the methods for
a first-order GM source with correlation coefficient

(denoted GM-1(0.95) in the tables) and with input white-
noise variance . We assumed a BSC with BER of

(denoted BSC(0.05)), both for decoder design and
testing. A training set of 1 million samples was used for all de-
coder designs. We also generated three independent test sets,
each of size 50 000 samples.9 We assumed first-order DPCM at
three bits/sample. A uniform quantizer was chosen, based on the
dynamic range of the prediction residual. While optimizing the
quantizer consistent with the channel and the decoding scheme,
perhaps along the lines of [2], could further improve system per-
formance, the main goal of our experiments was to compare
decoding techniques in a common setting. For SAMMSE es-
timation of the prediction residual, i.e., , we assumed a
first-order Markov model for . The choice of the predictor is
very important in JSC decoding for the DPCM case. A value for

too close to will not introduce sufficient residual redundancy,
while a value too small relative to will not adequately capture
the DPCM prediction gain. A robust choice for was suggested
in [3]. However, we have taken an empirical approach, trying a
number of values for in the interval [0.1, 0.95] and measuring
the decoders’ performances for each. We first conducted exper-
iments for the infinite-delay case.

Table I gives signal-to-quantization-noise ratio SQNR
MSE results, with the MSE and both aver-

aged over the three test sets, for naive decoding, standard JSC
decoding (4), and our LS decoder (12). The SQNR is eval-
uated for the indicated choices of , with the associated LS

pair shown. The column “Gain” is the gain in SQNR (in
decibel units) of our LS decoder, relative to the standard de-
coder. This gain ranges from 1.01 dB down to 0.17 dB

. The best performance for both decoders is achieved
at , where the LS decoder is 0.41 dB better than the
standard decoder. The best performance for the naive decoder

9We found that this size test set was adequate to give representative results.
In particular, increasing the test set length to 500 000 samples gave results (av-
eraged over the three independent test sets) within 0.02 dB of those based on
50 000 samples, for the several cases we tried.

TABLE I
SQNR PERFORMANCE OF NAIVE, STANDARD, AND LS DECODING FOR DPCM
ENCODING OF A GM-1(0.95) SOURCE, AS A FUNCTION OF THE PREDICTION

COEFFICIENT, FOR THE CASE OF “INFINITE-DELAY” DECODING. A BSC(0.05)
CHANNEL WAS USED. ALSO SHOWN ARE LS COEFFICIENTS

TABLE II
SQNR PERFORMANCE OF “INFINITE-DELAY” STANDARD AND LS DECODING

FOR DPCM ENCODING OF A GM-1(0.95) SOURCE AS A FUNCTION OF THE

PREDICTION COEFFICIENT. A BSC(0.05) CHANNEL WAS USED. IN

THIS CASE, LS DECODING USES ONE CAUSAL AND ONE ANTICAUSAL

SAMPLE. ALSO SHOWN ARE LS COEFFICIENTS

occurs at , the coefficient choice from [3]. However,
the naive decoder is still about 9 dB worse than the best-per-
forming LS decoder. Note also that the choice is far
from optimal for standard and LS decoding. Consider the de-
sign at . The training set SQNR is 12.46 dB, while the
average test set SQNR is 12.40 dB. Similar small differences be-
tween training and test set performance (less than 0.1 dB) were
consistently observed in our experiments. Finally, note that in
all our experiments, for all values, we found that the LS de-
sign chooses and , i.e., increased weight is given
to the prediction and diminished weight to the estimated pre-
diction residual, compared with the standard decoder.10 This is
a fundamental characteristic observed in our LS solutions.

Table II gives results comparing the standard decoder (4) and
our LS decoder (18) with . In this case, the gain
of our decoder at is 0.76 dB, and at , the
gain is 1.09 dB, i.e., -dB additional gain is attributable
to the term. Table III shows that, at least in the first-order
GM case, the benefit of using additional causal terms diminishes
rapidly. The additional gain from 10 terms [ in (15)] is

dB, relative to (12) [which is in (15)].
We also conducted experiments for the finite-delay case,

comparing with [12]. We first considered both and
. We evaluated performance both for the first-order GM

source and for the tenth-order GM source from [12]. For the
first-order source, we chose . For the tenth-order

10The value � = 1:00 for a = 0:85 in Table I was rounded up from 0.996.
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TABLE III
SQNR PERFORMANCE OF NAIVE, STANDARD, AND LS DECODING FOR DPCM

ENCODING OF A GM-1(0.95) SOURCE AS A FUNCTION OF THE PREDICTION

COEFFICIENT, FOR THE CASE OF “INFINITE-DELAY” DECODING. A BSC(0.05)
CHANNEL WAS USED. ALSO SHOWN ARE LS COEFFICIENTS. IN THIS CASE,

THE LS DECODER USES 10 CAUSAL SAMPLES

TABLE IV
PERFORMANCE OF STANDARD DECODER, [12], AND LS DECODER FOR THE

GM-1(0.95) AND 10TH-ORDER GM SOURCES FOR � = 0; 1. A BSC(0.05)
CHANNEL WAS USED

source, we chose as in [12]. For , we compared
(7) [implemented efficiently via (8)] with the LS decoder (17),
but with replaced by . For both decoders, how to calculate
the quantities , i.e., SAMMSE decoding in the
finite-delay case, is described in [14]. For both decoders, we
used . These decoders have the same complexity. We
also compared with the standard decoder (10). For , we
compared (8) for against our LS decoder, written in the
form

(20)

Note that these decoders have essentially the same complexity.
Further, note that both decoders take advantage of the delay

, while our decoder also efficiently includes an anti-
causal term . The decoder from [12], (8) can only
include similar dependence by using second-order memory

or third-order memory .
However, as already discussed, this would entail a large in-
crease in complexity. The results are shown in Table IV, with
our LS decoder best in all cases and with the decoder from
[12] only better than the standard decoder for the tenth-order
GM source. To further explore results for the first-order source,
we also tried choosing (based on [3]), instead of

. In this case, we found (8) achieved 9.85 and 10.24
dB for , respectively, compared with 9.50 and 10.18 dB
for the standard decoder. While (8) does gain over the standard
decoder for , the results for both decoders are worse
(by more than 1 dB) than for the choice . Also, for
the tenth-order source, we evaluated (8) for against the
standard decoder (10) as is increased. Fig. 3 shows that the
performance of (10) and (8) approach each other fairly quickly,
with the two curves indistinguishable by . Thus, for this
source, the “infinite-delay” equivalence of [12] and the standard
decoder is borne out at a fairly small value. For the first-order
GM source, the convergence of the two decoders is more rapid,

Fig. 3. SQNR performance of the standard decoder and the decoder from [12]
for the tenth-order GM source, as a function of � . A BSC(0.05) channel was
used.

TABLE V
SQNR PERFORMANCE OF NAIVE, STANDARD, AND LS DECODING FOR DPCM

ENCODING OF GM-1(0.95) SOURCE UNDER CHANNEL MISMATCH

CONDITIONS, FOR THE CASE OF “INFINITE DELAY.” STANDARD AND LS
DECODERS WERE DESIGNED FOR BER � = 0:05; a = 0:35. THE NAIVE

DECODER USED a = 0:72. THE LS DECODER USES ONE CAUSAL AND ONE

ANTICAUSAL SAMPLE. LAST COLUMN GIVES LS DECODER PERFORMANCE

MATCHED TO THE CHANNEL (FOR a = 0:35)

with the performance of the two decoders comparable even at
.

Finally, Table V gives results of some mismatch experiments
for the infinite-delay case, where the decoders were all designed
for BER , but where the true , and .
Here, the naive decoder used , while the other decoders
used . There are several observations to make here.
First, it is seen that the LS decoder retains a substantial SQNR
advantage over standard JSC decoding under channel mismatch.
Second, note that for BER , naive decoding actually
gives better results than the mismatched LS decoder. Finally,
the last column gives performance of an LS decoder matched to
the channel condition. This gives an indication of the loss in LS
decoder performance, attributable to channel mismatch.11

Computational Complexity: The number of multiplications
and additions for our decoding approach are ,
with the order of the LS filter. The complexity of standard
JSC decoding is . For the choices of and con-
sidered here, the complexity of our approach is only slightly
greater than that of standard JSC decoding. The complexity of
both our approach and standard JSC decoding are much greater

11The reason that the matched LS decoder performance is worse than the
naive decoder performance for BER = 0:001 is the choice of a. When the
matched LS decoder also uses a = 0:72, it achieves 17.68 dB, outperforming
the naive decoder at BER = 0:001.
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than for naive decoding; running C under Linux on a 1.4-GHz
machine, we found that for , naive decoding
processes samples in 2 s, while standard JSC decoding and
our LS approach require more than 3 min (a more than 90 times
increase). However, this is compensated by (much better) JSC
decoding performance for high-BER channels.

Nonpredictive Coding Results: We have also investigated
our LS optimization for improving nonpredictive SAMMSE
decoding [14], based on (19). As a source, we chose the second
discrete cosine transform (DCT) coefficient (based on zigzag
scan order) from 8 8 blocks of a gray-scale image. A 1-D
source (time series) was created by applying the 8 8 DCT
transform to the image blocks and then scanning the coefficients
using a fixed row-by-row scanning order. We chose a scalar
quantizer with eight quantization levels, designed via the Lloyd
algorithm using 23 gray-scale images. The initial quantizer
was randomly selected from the training data. Again, we chose

for both training and testing. We formed SAMMSE
decoders based on both first- and second-order Markov models
for the quantization indexes. The Markov probabilities were ob-
tained from frequency counts based on encoding of the source.
SAMMSE decoding based on a first-order Markov model gave
an SQNR, measured over the same 23-image source, of 2.99
dB. For a second-order Markov model, SAMMSE decoding
gave 4.52 dB. We next designed an LS-optimal decoder that
filters the first-order SAMMSE decoding result, according to
(19). For this LS-optimal decoder, we chose
and optimized the for each of the 23 images. This was
done because we found that only small performance gains are
achieved if a single “universal” filter is used for all the
images. A small amount of side information to the decoder is
required, to specify the coefficients for each image. The
resulting LS-optimal decoder performance, averaged over the
23-image source, was 4.12 dB– 1.1 dB better than first-order
SAMMSE, and only 0.4 dB worse than second-order
SAMMSE. The LS decoder complexity was

8% higher than first-order SAMMSE and roughly
seven times less than second-order SAMMSE .

V. CONCLUSION

We first reviewed prior work on JSC decoding for DPCM,
including [12]. Next, we proposed a new decoder that adds
degrees of freedom, allowing one to select the relative weights
given to the prediction and prediction-error terms within the
decoding rule. This decoder is designed on training data to
optimize a LS criterion. This new decoder was found to im-
prove upon the standard JSC decoder and [12] without any
increase in complexity. Moreover, additional gains over the
standard decoder can be achieved with quite modest increases
in complexity. The flexibility of our LS procedure was also
demonstrated, via extension, to include anticausal terms in the
estimation. Finally, we applied our design procedure even more
generally, to yield better decoders for the nonpredictive case as
well, while retaining practical complexity. This approach was
demonstrated for decoding image-transform coefficients. An
open question is whether the use of nonlinear estimators, e.g.,
neural networks, could further improve upon our results. Future
work may consider an extension for systems that use both

predictive coding and variable length coding, a 2-D extension
specifically for decoding digital images, as well as extension
for the case of predictive vector quantization.

APPENDIX

Here, we consider the infinite-delay case and show that the
decoding rule (7) under infinite delay (i.e., with replaced
by ) is actually equivalent to the standard decoder. First, we
rewrite (7) assuming infinite delay, i.e.,

(21)

Now, note that if , the Markov model order, then ir-
respective of the order of the Markov model for the quantized
source (so long as it is first order or greater), the computational
and memory complexity of (21) [and of (7)] is . The
Forward and Backward recursions used to calculate the joint
probability require
computations on a trellis with states. However, this can
be simplified as follows. Noting that is a function
solely of , we can simply get that

(22)

The second step was achieved by explicit marginalization of
the joint probability mass function (pmf)

. The third step was obtained by using
(2) to replace the term in parentheses. Thus, we simply obtain
the decoding rule

(23)

This rule (first given as (9) in Section II-C) gives the same de-
coded sequence as (21). Note that is obtained from
(3) and (2), i.e., from the SAMMSE decoder [14]. The com-
plexity of SAMMSE decoding is . If , there
is a large reduction in complexity for (9), relative to (21). More-
over, even in the finite-delay case, the marginalization applied
in (22) can be used to reduce the complexity of (7), again so
long as . In particular, a similar derivation leads, in the
finite-delay case, to the decoder

(24)

where is given by (2).
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While we have shown that for , the complexity of
(21) and (7) can be reduced, we next consider the standard JSC
decoder (4) and demonstrate that (9) [and thus, (21)] is, in fact,
equivalent to this rule. In particular

(25)

We have just shown that for the “infinite-delay” case, (21) from
[12] is equivalent to (9), which, in turn, is equivalent to the stan-
dard rule (4).

In the finite-delay case, the standard rule and the rule from
[12] are not the same. In particular, the standard decoding rule
is obtained by replacing by in (4). This can be shown to
be equivalent to the rule

(26)

Comparing with (8), we see that (8) uses , while
(26) uses , i.e., for (8) conditions on more
(anticausal) received indexes than (26).
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