
Design and implementation of a Layer-7
MPLS-based Web Switching Architecture

A. Mancuso1, E.S.G. Carotti1, J.C. De Martin2, A.R. Meo1

1DAUIN/ 2IEIIT-CNR – Politecnico di Torino
c.so Duca degli Abruzzi, 24
10129 - Torino – Italy
{carotti|demartin|meo}@polito.it

Abstract
During recent years web servers evolved from providing simple, static content to offering
different services and a variety of dynamically generated pages and objects. Consequently,
scalability and load-balancing have emerged as main requirements for modern web farms.
A common solution is based on placing a Web Switch in front of the web servers; the
switch acts as a dispatcher that redirects user requests according to desired criteria. In this
paper we describe a novel web switching architecture, based on the MPLS technology and
on Open-Source software. The switching decision is primarily made considering Layer-7
information, thus achieving flexible content-based routing to the most appropriate server.
State information from the web servers - such as, for example, load average and resource
availability - is considered as well. The architecture here proposed has been implemented
as a free software project using MPLS-enabled Linux workstations.

Keywords
Web switching, MPLS, Web Farm, Layer-7 switching, content-based routing

1. Introduction

As the use of residential broadband connection increases, more users connect to the Inter-
net to access services like, for example, home-banking or e-commerce. As a consequence,
the need for larger bandwidth and more computing power is increasing to handle user re-
quests quickly and efficiently. To meet these growing requirements many solutions have
been proposed and adopted, such as for example: various form of caching, mirroring and
clustering of servers.

A common solution is to build a web farm as a cluster with a front-end which chooses
the proper web server for each request according to a predefined policy.

Dragos et al. [4] implemented a load-balancing architecture based on Multi-Protocol
Label Switching (MPLS, RFC 3031 [6]), which is a fast-growing technology [1] allow-
ing for faster switching performance with respect to IP, since only a fixed-length label
switch has to be performed on each packet. Dragos’s technique, however, does not choose
the web server according to the specific resource requested since it uses only Layer-4
information. Yang and Luo showed in [3] that it is convenient to partition the web farm
according to the kind of resources offered to optimize the performance of a distributed

0-7803-9088-1/05/$20.00 (C) 2005 IEEE

web server system. For this purpose a Layer-7 switch needs to be employed, i.e. a switch
that routes requests based on the content requested.

In this paper, we discuss the design and the implementation of a novel MPLS-based
Web Switch using Layer-7 information, i.e., the switching decision is taken with respect
to the availability of specific resources on a certain web server. We took our cue from an
article discussing Web Switching over MPLS [2] where the high-level architecture of an
MPLS-based Web Switch was sketched. We detailed the architecture by designing and
developing all the different modules needed to implement a Layer-7 Web Switch using
only Open-Source software such as MPLS-enabled [5] Linux.

2. Open Web Switch Architecture

The main goal of this work is to design an architecture that could be used as a model to
implement an MPLS-based Layer-7 Web Switch. Thus, the proposed architecture defines
the subsystems, their functionalities and their mutual interaction, leaving to the imple-
mentor the choice of the specific MPLS switch, which could be a standard commercial
MPLS-switch or even a low-cost MPLS Linux-based system; different switching policies
can be easily implemented.

The proposed architecture is: Open, since it can be implemented using only Open-
Source software and the design itself is open, meaning that anybody can adapt it to partic-
ular needs; Distributed, because while other load-balancers or content-routers centralize
all the functionalities on a single device, OWS makes a clear distinction between the for-
warding logic and the physical dispatching of the traffic to the web farm, distributing
them on different devices at different network locations; Modular as each subsystem in
the architecture is composed of several interacting software modules.

MPLS Network

LMP (Label Mapping Proxy)

MPLS Layer

TCP
Connection
Handler

Web Farm
Information Client

Label

Mapping

Agent

LMATCH

WFIC WFIS

Web Farm

Information Server

MPLS Layer

MWD (MPLS Web Dispatcher)

WSIA1

Web Server

Information Agent

WSIAn

Web Server

Information Agent

Web Server Farm

Figure 1: The main modules of the proposed architecture.

The Open Web Switching (OWS) architecture, depicted on Figure 1 is composed of a
cluster of web servers and two other subsystems, which are the Label Mapping Proxy
(LMP) which binds the appropriate MPLS label to the HTTP requests according to Layer-
7 headers, and the MPLS Web Dispatcher (MWD) which dispatches incoming flows to
the more suitable web server in the farm according to the label previously attached. The
dispatching logic is thus distributed among the LMP which performs “logical dispatch-
ing” and the MWD which performs “physical dispatching”.

0-7803-9088-1/05/$20.00 (C) 2005 IEEE

Each client is assumed to direct all its requests to the logically closest LMP system
which assigns the proper MPLS label. Since MPLS labels can be stacked, the label as-
signed by the LMP will not be removed until the last node (the MWD) is reached and
thus, it can be used to identify the web server or the resource. This way the Layer-7 head-
ers are analyzed and the switching decision is taken only at the front-end proxies thus
eliminating the bottleneck of a centralized switch.

The MPLS cloud between the proxies and the dispatcher is completely unaware of
the meaning of the MPLS label assigned to each flow by the LMP, and simply routes the
requests to the MWD system. The web server in the back-end does not have access to the
original HTTP header and identifies the requested resource using the original MPLS label,
assigned by the front-end. As a consequence the system is transparently and implicitly
attributing a semantic meaning to MPLS labels while it is using them to perform optimal
web traffic dispatching.

2.1 Web Farm

Each web server in the farm needs to send its state information to the MWD. This is
the task of the Web Server Information Agent (WSIA), which interacts with the MWD,
sending for example, server load or resource availability, according to the desired policy
(load-balancing, partitioning of the web farm and resource allocation). At least the fol-
lowing information has to be sent: the IP Address of the web server: each web server has
an associated IP address, which is needed to serve client’s requests directly back without
going through the Web Switch; the List of Resources which is needed for the switching
decision.

The OWS architecture does not put any constraint on the dispatching policy so, for
example, current load average could be sent and taken into account if load balancing
functionality is desired.

2.2 MPLS Web Dispatcher

The MPLS Web Dispatcher (MWD) is the subsystem which dispatches user requests to
the web servers according to the associated label and which also receives the Web Farm
information to be propagated to the front-end proxies from the WSIA.

The MWD keeps a table containing the mapping between user requests (HTTP URNs)
and web servers. This table is used in the switching decision so that each incoming flow
is forwarded to the proper web server.

The Web Farm Information Server (WFIS) is the only software module (apart from the
MPLS forwarding logic) which runs on the MWD subsystem. This module performs two
tasks: first, it gathers and distributes all the information needed to make the dispatching
decision and to bind MPLS labels to user requests; second, it creates and keeps up-to-date
the MPLS switching table.

The MWD can be implemented on any platform with an MPLS forwarding layer and a
control processor to establish the communication with the WSIA and the proxies. For this
purpose a commercial MPLS switch could be used; we chose to use a Linux workstation
with a kernel patched to support MPLS [5].

0-7803-9088-1/05/$20.00 (C) 2005 IEEE

2.3 Label Mapping Proxy

The main task of the Label Mapping Proxy (LMP) is to receive user requests, analyze
the HTTP headers and bind MPLS labels so that each request is dispatched to the proper
Web Server. LMP works mostly like an HTTP proxy and it is also responsible of handling
low-level TCP details. As such, it can be chosen by the user or transparently deployed by
the internet provider.

It is composed of three modules: the TCP Connection Handler (TCH), the Label Map-
ping Agent (LMA) and the Web Farm Information Client (WFIC).

The task of the TCH module is to handle low-level TCP and HTTP details, such as
terminating TCP connections and handling the HTTP protocol. This two steps are closely
related because to actually perform Layer-7 switching it is necessary to get the HTTP
header which is not sent before a regular TCP connection has been established, i.e., the
three-way handshake is performed.

The Label Mapping Agent (LMA) binds user requests to the corresponding MPLS la-
bels. This module decides which is the proper back-end server for every incoming request,
attaching the corresponding MPLS label to all the packets belonging to the request.

Last but not least, the WFIC gathers all the information coming from the WSIAs on
the dispatcher and redistributes them to the Label Mapping Agent module.

3. Conclusions and future work

In this paper we discussed the design and implementation of a Layer-7 MPLS-based Web
Switching Architecture. The main technical goals of the proposed design are: making an
efficient Layer-7 Switch, removal of the single point of TCP connection termination, and
exploitation of some MPLS features.

Future work includes the definition of a High Availability schema for the MWD sub-
system, which would increase the global availability and reliability of the system as an
experimental campaign to measure the performance.

References
[1] Arup Acharya. Multi-protocol label switching (MPLS).

http://www.research.ibm.com/mplsws/publications/mpls1.pdf, August 2000.
[2] Arup Acharya, Anees Shaikh, Renu Tewari, and Dinesh C. Verma. Web Switching using

MPLS. MPLS World News, January 1997.
[3] Chu-Sing Yang and Mon-Yen Luo. A content placement and management system for dis-

tributed Web-server systems. In Proceedings of the 20th International Conference on Dis-
tributed Computing Systems, pages 691–698, 2000.

[4] Radu Dragos, Sanda Dragos, and Martin Collier. Design and implementation of an MPLS
based load balancing architecture for Web switching. In Proceedings of 15th ITC Specialist
Seminar, Wurzburg, Germany, July 2002.

[5] J. Leu. MPLS for Linux. URL: http://mpls-linux.sourceforge.net.
[6] E. Rosen, A. Viswanathan, and R. Callon. RFC 3031: Multiprotocol Label Switching Archi-

tecture, January 2001.

0-7803-9088-1/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

