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ABSTRACT

Many advanced video transmission techniques rely on per-
packet distortion estimates. To compute reliable estimates,
however, the decoder inner workings, including the con-
cealment module used in case of packet losses, should be
fully known at the encoder. This paper explores the ef-
fects on video distortion estimation of encoder-side erro-
neous assumptions about the concealment technique used
by the decoder. Several concealment techniques, roughly
representative of the main families of concealment algo-
rithms (i.e., spatial, temporal and hybrid), have been im-
plemented and then distortion has been evaluated at the en-
coder using an analysis-by-synthesis approach for all pos-
sible combinations of encoder-decoder concealment pairs.
The results for nine, widely known, test video sequences
show that as long as the encoder concealment algorithm
belongs to the same family of the decoder one, the effect
of concealment mismatch on distortion estimation is quite
small. The results have also been validated by measuring
the effects of suboptimal distortion estimation on packet
classification for video transmission on a 2-class DiffServ
IP network. Simulations results show that, for intra-family
concealment mismatch, packet misclassifications affect only
1–5 % of the packets, yielding, on average, perceptually
variations of only about 0.2 dB PSNR.

1. INTRODUCTION

The increasing importance of multimedia communications
over IP networks has generated, in recent years, a large
number of proposals aimed at improving the perceptual qual-
ity experienced by end users. IP networks, in fact, do not
guarantee the service quality, therefore, techniques to con-
tain the effects of packet losses, delay and jiter have to be
implemented at the application layer.

Several state-of-the-art media encoders implement re-
silience tools, including, e.g., resynchronization markers,
forward error correction, packet classification, and layer cod-

ing [1]. Such tools are used to prevent errors, to stop their
propagation or to concentrate losses in given low-importance
regions (i.e., packets). At the decoder side, an error conceal-
ment module is typically included to lower the distortion
caused by packet losses.

Determining the perceptual importance on each individ-
ual packet has become, in recent years, a prerequisite for
several multimedia communications techniques. A family
of techniques, for instance, has been recently proposed for
audio and video transmission over Differentiated Services
(DiffServ) IP networks [2], which support several classes of
traffic with varying quality of service; several works [3, 4, 5]
showed that perception-based packet classification can con-
siderably increase the quality of the received video.

Video coding standards, however, usually do not de-
fine the concealment algorithm, which may then vary even
among compliant implementations of the same standard.
The non-standardization of the concealment module affects
the estimation of the perceptual importance of video pack-
ets. Reliable estimation of the perceptual importance of
multimedia packets, in fact, depends on the specific error
concealment technique employed at the decoder. When the
concealment used at the encoder does not match the actual
decoder–side concealment algorithm, distortion estimates
are affected by an error. This paper aims at estimating such
error by sistematically studying the effects of encoder-decoder
concealment mismatch on distortion estimation.

The paper is organized as follows: technical background
is presented in Section 2. The concealment techniques im-
plemented for this work are described in Section 3, while
per-packet distortions and misclassification results are re-
ported in Section 4. Section 5 shows perceptual results
for the case of video transmission over DiffServ networks.
Conclusions are drawn in Section 6.



2. BACKGROUND

In the case of video coding, a large number of error conceal-
ment algorithms —see, e.g.,[6, 7, 1, 8, 9]— have been pro-
posed. The techniques can be grouped –with some degree of
approximation, which can be excused considering that this
paper does not address concealment per se— in three main
families: spatial algorithms, that interpolate the missing in-
formation using surrounding data within the same frame.
Temporal concealments techniques, which mask errors us-
ing information from a previously decoded frame, either se-
lecting MBs according to motion vectors of neighbouring
macroblocks or simply replicating the pixels in the same
position of the lost ones. Mixed concealment approaches,
which are a combination of spatial and temporal approaches;
the most popular uses a spatial concealment on the I-frame
and temporal concealment on P- and B- frames. Mixed
schemes often combine the good performance of temporal
approaches with the absence of error propagation to fol-
lowing GOPs due to the self-concealment of the I-frames.
Recently, a distinction between first and second generation
algorithms has been proposed [10]; second generation con-
cealment techniques are based on the training of a model for
the selection of concealing information.

An example of usage of per–packet distortion estima-
tion is multimedia communications over DiffServ networks.
In that case, an accurate identification of the packets that
should experience lower delays or lower packet loss rates is
key in delivering high perceptual quality to the end users.
In a multimedia stream, in fact, not all the portions of the
compressed bitstream have the same importance. Encoder-
side packet classification depends on the concealment used
at the decoder; if this is not known, it potentially leads to
packet misclassification, and, consequently, to lower per-
ceptual quality. The problem of the encoder-decoder con-
cealment mismatch and its effects on distortion estimation,
although mentioned in [11], has not been extensively stud-
ied so far.

3. CONCEALMENT TECHNIQUES

The concealment algorithms studied in this paper are first
generation ones. We implemented several techniques within
the H.264 reference code [12], overriding the concealment
already present within the reference decoder [13]; in this
work we use ten different algorithms, defined as follows:

• spatial algorithms:

sp1 copy of the uppermost neighboring MB, if avail-
able;

sp2 copy of the leftmost neighboring MB, if avail-
able;

sp3 for each 4x4 block, average color of the three
upper-left 4x4 neighboring blocks;

sp4 for each MB, average color of the three upper-
left MBs;

• temporal algorithms:

te1 copy of the MBs in the same position of the lost
ones, in the previous I- or P-frame;

te2 copy of the MBs pointed by the average of sur-
rounding MVs;

te3 predict MVs as an extension of the previous P-
frame MVs;

• mixed algorithms: obtained as sp3 on the I-frame and
one of the temporal algorithms on remaining frames;
mix1, mix2 and mix3 use respectively te1, te2 and
te3.

The above techniques have been chosen to cover a wide
spectrum of approaches, although the list is by no means
intended to be exhaustive; our focus is mainly centered on
the behavior of the different algorithmic families.

4. PER-PACKET DISTORTION AND
MISCLASSIFICATION

The distortion introduced by a packet loss (assumed to be
isolated) is measured by the Mean Square Error (MSE) be-
tween the correctly decoded sequence and the corrupted one.
To lower the computational complexity of this measure, in
this work future frame distortion is estimated using a statis-
tical model of future distortion as described in [14]. Table 1
shows the average per-packet MSE values for two of the
nine test sequences analyzed for this work; similar results
have been obtained for the remaning seven test sequences.

The per-packet MSEs of the spatial algorithms is at least
one order of magnitude higher than the other two fami-
lies, while spatial and mixed approaches show closer val-
ues. In all cases, intra-family distortions are very close to
each other. As a consequence, we expect, for the case of
transmission of DiffServ networks, that the number of mis-
classified packets for intra-family mismatch should be sig-
nificantly lower than misclassifications between algorithms
belonging to different families. The results shown in Table 2
confirm our expectations.

The percentage of misclassified packets, in fact, when
encoder and decoder concealments belong to the same fam-
ily is always below 6%, while it is never lower than 13% if
the algorithms belong to different families. Similar results
have been obtained also for premium bandwidths of 10%
and 30%.

The marking patterns for a particular sequence, i.e., pre-
cisely which packets are assigned to the premium class, strongly



Table 1. Average MSE values for different concealment algo-
rithms and sequences.

Sequence Concealment Average
name name per-pcket MSE

foreman sp1 6509.7
sp2 8179.7
sp3 6373.1
sp4 6372.7
te1 260.9
te2 173.7
te3 187.8

mix1 312.2
mix2 235.0
mix3 247.0

tempete sp1 1101.3
sp2 1440.8
sp3 1007.0
sp4 988.4
te1 71.5
te2 42.4
te3 53.7

mix1 94.7
mix2 68.0
mix3 78.6

depend on the concealment family used, with minor differ-
ences among algorithms within the same family. The qual-
ity of the video obtained at the decoder side is then the result
of the correctness of the marking pattern generated by the
encoder, which tries to concentrate losses in low-importance
regions, as well as the result of the actual performance of the
decoder–side concealment algorithm.

5. DIFFSERV TRANSMISSION RESULTS

Nine, widely known test sequences have been encoded and
transmitted over a simulated 2-class (best effort and pre-
mium) DiffServ network, with 20% of premium bandwidth.
Each sequence has been marked according to all of the pro-
posed algorithms, transmitted and then decoded using all
of the available decoder concealments, for an aggregate of
one hundred pairs of encoder and decoder algorithms for
each of the nine sequences. Table 3 shows the PSNR val-
ues obtained with three decoders and all the encoders, for
sequences foreman (high motion), mobile (medium motion)
and news (slow motion). PSNR values are computed with
respect to the original uncompressed sequence.

Concealments belonging to the same family show simi-
lar PSNR results. Encoders and sequences not shown, due
to space constraints, in Table 3 exhibit the same behavior.

Results are affected by three factors: the correctness
of the importance estimation, the masking capability of the
specific decoder concealment employed, and, in case of mixx

family, the lack of inter-GOP error propagation. The best

Table 2. Average percentage of misclassified packets for couples
of algorithms belonging to the same family and to different fami-
lies; two classes, 20% premium bandwidth.

Sequence Misclassified packets (%)
name same family different families

foreman 3.352 14.683
tempete 4.332 13.558
mobile 5.238 14.603
news 2.354 16.150
akiyo 1.420 26.237
silent 3.408 14.747
sean 1.715 21.822
paris 2.822 14.771
table 3.772 14.291

performance is most of the time achieved by matching pairs
of concealments, since in that case the predicted importance
of a packet is the closest possible to the real impact expe-
rienced at the decoder side. If the encoder matches at least
the family of the decoder algorithm, performance is only
very slightly affected, while PSNR degrades much more
markedly —from more than half a dB to several dB’s— if
families do not match. Results also show that, at least at the
considered packet loss rate, decoder–side temporal conceal-
ment techniques deliver better performance than the other
two families, whatever the encoding algorithm is.

6. CONCLUSIONS

In this paper we addressed the problem of the mismatch
between the concealment implemented at the decoder and
the one used for distortion estimation at encoder side. We
implemented several error concealment algorithms both at
encoder and decoder side, and performed a study of the per-
packet MSE values for nine, widely known test video se-
quences.

Packet classification results for different encoder-side
algorithms show that the percentage of misclassified pack-
ets is very low for concealment algorithms belonging to the
same family, and quite high in case of different families.
This behavior was confirmed by network simulationa; we
demonstrated that in almost all cases the perfect matching
between the two concealments ensures best perceptual per-
formance. Moreover, it is sufficient to just match the family
of the decoder algorithm, while marked performance degra-
dations (up to several dB’s PSNR) are observed when the
concealments belong to different families.

Finally, as a side result, it was shown that the temporal
concealment algorithms studied in this work behave sensi-
bly better than the mixed and spatial approaches.



Table 3. PSNR with respect to the original uncompressed se-
quence as a function of the concealment algorithms; DiffServ net-
work with 20% premium bandwidth and 10% packet loss rate.

PSNR (dB)
Sequence Encoder Decoder

name sp3 te2 mix2

foreman sp1 30.51 31.05 31.11
sp2 30.34 31.19 31.24
sp3 30.51 31.05 31.11
sp4 30.51 31.05 31.11
te1 29.70 31.35 30.35
te2 29.19 31.33 29.77
te3 29.75 31.35 30.39

mix1 30.43 31.19 31.49
mix2 30.60 31.19 31.58
mix3 30.63 31.21 31.62

mobile sp1 22.30 25.20 22.51
sp2 22.03 25.82 22.42
sp3 21.89 25.08 22.10
sp4 22.05 25.09 22.32
te1 22.12 26.25 22.91
te2 22.20 26.23 22.91
te3 22.16 25.99 22.63

mix1 22.69 25.66 23.30
mix2 23.54 26.04 24.23
mix3 23.35 25.85 24.02

news sp1 27.65 34.30 28.24
sp2 27.69 34.64 28.37
sp3 27.54 34.49 28.06
sp4 27.54 34.49 28.06
te1 27.64 34.98 28.52
te2 27.66 35.00 28.43
te3 27.40 34.95 28.17

mix1 25.29 33.19 26.37
mix2 25.26 33.12 26.35
mix3 25.28 32.90 26.33
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