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ABSTRACT

Despite the great interest towards long term recordings of
Electromyographic (EMG) signals, which find applications
for example in telemedicine, only a few studies have dealt
with compression of these signals. In this paper we pro-
pose a lossy coding technique for surface EMG signals. The
technique is based on the Linear Predictive Coding paradigm
widely used for speech compression. The algorithm was
tested on both simulated and experimental signals. Mean
frequency, median frequency, variance, skewness, and kur-
tosis of the EMG signals were preserved with an error less
than 3% with respect to the original values for synthetic sig-
nals and experimental signals, reducing the bitrate from 24
kbit/s (12 kbit/s after downsampling) to 352 bit/s, with a
compression factor of 97.1%. It was concluded that the Lin-
ear Predictive Coding paradigm can be effectively used for
high rate compression of surface EMG signals when preser-
vation of only the power spectrum of the signal is of inter-
est. This has applications in ergonomics and occupational
medicine.

1. INTRODUCTION

Recordings of electromyographic (EMG) signals can have
a duration of hours when muscle function is to be con-
tinuously monitored [1]. As an example, surface EMG
signals are acquired during working activities in occupa-
tional medicine for detecting muscle overload which may
determine work-related musculo-skeletal disorders. Com-
pression of these large amount of data is necessary in
most cases, such as when EMG data are acquired on a
patient and sent remotely to be processed and analyzed
(telemedicine). Surface EMG signals are usually acquired
at 12–16 bit/sample, at sampling rates ranging from 1 kHz
to 10 kHz. Moreover, many detection systems are often ap-
plied on the same subject, leading to multi-channel record-
ings.

Extensive work on signal compression has been done

in related fields, such as electrocardiogram (ECG) [2] or
electroencephalogram (EEG) signal coding [3]. However,
despite the importance of the possible applications, there
are still few works dealing with EMG signals.

Norris et al. [4], one of the pioneers in this research
area, investigated lossy compression of EMG signals us-
ing adaptive differential pulse code modulation (ADPCM),
a technique commonly applied to speech signals. Guerrero
et al. [5] compared the performance of common compres-
sion techniques, mostly adopted for speech signal coding,
applied to EMG signals. More recently, the use of wavelets
has been suggested for EMG signal compression [6]; EZW,
the wavelet-based algorithm used in JPEG2000 for coding
still images, was also applied to EMG signals [7].

These techniques were designed to preserve, with vari-
ous degrees of accuracy, the waveform of the encoded sig-
nal, although for some applications a reconstruction of the
waveform may not be needed, while it is important to pre-
serve the signal spectrum only. It may indeed be of im-
portance to monitor spectral changes occurring slowly over
time due to continuous muscle activation, as occurs in mon-
itoring muscle activity during repetitive work activities at
low contraction levels (e.g., computer work) [8]. EMG sig-
nals presenting continuous activity may be considered WSS
over short time windows (0.5-1 s). The spectrum of these
EMG signals can be successfully described with an autore-
gressive (AR) model [9][10].

In this paper we propose a novel compression technique
which preserves EMG spectral features. The method is
based on a model approach, laying its foundation in the Lin-
ear Predictive Coding and the related Autoregressive Mod-
eling theory.

The rest of this paper is organized as follows: in section
2 the coding requirements are described; the proposed solu-
tion is presented in section 3; the signals used as a test set
for the proposed algorithm are described in section 4 and
in section 5 results are discussed; finally conclusions are
drawn in section 6.
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2. SURFACE EMG VARIABLES

The features of surface EMG that we decided to preserve af-
ter compression are: the mean and median frequency, vari-
ance, skewness and kurtosis of the estimated power spectral
density [11]. The moments of the PSD P [f ] in the positive
frequency domain are defined as follows:

Mk =
N∑

i=1

fk
i P [fi] · (fi − fi−1) (1)

MCk =
N∑

i=1

(fi − M1)kP [fi] · (fi − fi−1), (2)

where Mk and MCk are the standard and central moments
of order k.

Mean frequency fmean is defined as

fmean =
∑+N

i=1 fiP [fi] · (fi − fi−1)∑+N
i=1 P [fi] · (fi − fi−1)

, (3)

where N is the number of frequencies for which the
PSD has been estimated.

Median frequency fmed is the frequency such that half
of the power of the signal is due to harmonics at frequencies
lower than fmed, i.e.:

fmed∑

i=1

P [fi] · (fi − fi−1) =
+N∑

i=fmed

P [fi] · (fi − fi−1) =

1
2
·

+N∑

i=1

P [fi] · (fi − fi−1). (4)

Under certain conditions, a variation in fmed and fmean

provides an indication on the change in muscle fiber con-
duction velocity [11].

The second-order central moment, MC2, i.e., the vari-
ance of the PSD, is computed as

MC2 = M2 − M2
1 =

+N∑

i=1

(fi − fmean)2P [fi] · (fi − fi−1).

(5)
The normalized third central moment, i.e., the skewness,

µ3, is defined as:

µ3 =
MC3

M
3/2
C2

=
∑+N

i=1(fi − fmean)3P [fi] · (fi − fi−1)

(
∑+N

i=1(fi − fmean)2P [fi] · (fi − fi−1))3/2
.

(6)
Skewness bears information on the asymmetry of the PSD
with respect to the mean frequency.

The normalized form of the fourth order central mo-
ment, the kurtosis, µ4, expresses the degree of peakedness

of the PSD, and is defined as:

µ4 =
MC4

M2
C2

=
∑+N

i=1(fi − fmean)4P [fi] · (fi − fi−1)

(
∑+N

i=1(fi − fmean)2P [fi] · (fi − fi−1))2
.

(7)

3. ALGORITHM DESCRIPTION

The surface EMG signals were divided in time epochs of
1 s. A parametric model-based approach was applied to pre-
serve the spectral envelope irrespective of the signal wave-
form; thus, the mean square error of the reconstruction with
respect to the original signal can not be used as performance
metric.

The first step was downsampling the signals to 1 kHz,
since all the relevant information is contained in the first
512 Hz; then a four-tap high-pass filter, with cutoff fre-
quency 10 Hz, was applied to the signals to remove the
significant DC component. The downsampling operation
brought the bitrate from 24 kbit/s down to 12 kbit/s (each
sample is 12 bit wide).

The EMG signals were then divided into a number of
frames which were independently processed and coded.
Each frame was modeled with an all-pole filter driven with
unit-variance gaussian white noise, according to the AR
model theory:

H(z) =
b0

1 +
∑p

n=1 anz−n
, (8)

where p represents the model order and the coefficients an

can be also viewed as the optimal linear predictor coeffi-
cients in a Linear Predictive Coding (LPC) paradigm.

The coefficients an were computed using the autocor-
relation method, which is guaranteed to assure the stability
of the filter. Stability is especially important if a realiza-
tion of the signal is needed at the decoder, even though, as
a side effect of our modeling technique, information about
the phase of the signal is lost, because Eq. (8) generates a
model which is minimum phase. The direct consequence is
that the waveform of the signal is generally not preserved;
anyway this was not an issue for our purposes, since we just
needed to accurately represent the spectrum of the signal.

The “goodness” of the model strongly depends on its or-
der p, which should be accurately chosen because a model
order too low does not preserve with enough accuracy the
spectrum, especially for what concerns the higher order mo-
ments, while if p is too high the model is overfit; moreover
the final bitrate grows linearly with p, as more coefficients
have to be sent to the decoder.

The coefficients of the AR(p) model were sent to the
decoder along with the energy of the signal, to have a suf-
ficiently faithful reconstruction of the spectrum of s(n). To
further lower the bitrate, quantization could be considered.
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Force level fmean fmed MC2 µ3 µ4

% of MVC Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.
5 0.08 0.04 1.74 0.18 0.60 0.22 2.08 0.29 0.60 0.14
10 0.06 0.05 1.46 0.57 0.56 0.15 2.00 0.24 0.74 0.21
15 0.04 0.05 1.36 0.30 0.42 0.04 1.86 0.18 0.60 0.16
20 0.02 0.04 1.24 0.46 0.44 0.05 1.82 0.19 0.60 0.14
30 0.04 0.05 1.30 0.33 0.48 0.08 1.76 0.18 0.70 0.16
45 0.00 0.00 1.50 0.41 0.50 0.10 1.84 0.11 0.76 0.05
60 0.00 0.00 1.76 0.29 0.42 0.11 1.88 0.28 0.72 0.18

Table 1. Mean and standard deviation of the relative error (percentage of the original value) of the relevant parameters of
the reconstruction with respect to the original synthetic signals. The signals were modeled as AR(10). The force level is
expressed as a percentage of the maximal voluntary force (MVC).

Force level fmean fmed MC2 µ3 µ4

% of MVC Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.
10 0.35 0.14 3.22 0.74 1.30 0.44 2.13 0.74 1.40 0.52
30 0.43 0.15 3.02 0.42 2.97 1.07 5.72 2.16 5.45 2.36
50 0.47 0.10 2.65 0.29 3.52 1.56 7.18 2.36 6.85 3.61
70 0.62 0.21 3.33 1.14 4.60 2.24 8.95 3.39 10.28 6.04

Table 2. Mean and standard deviation of the relative error (percentage of the original value) of the relevant parameters of the
reconstruction with respect to the original experimental signal. The signals considered were recorded from 6 patients. The
signals were modeled as AR(10). The force level is expressed as a percentage of the maximal voluntary force (MVC).

Direct quantization of the an coefficients is generally not
advisable; the Line Spectral Pairs (LSF), an alternative rep-
resentation of the an, could instead be profitably used to en-
sure maximum performance in terms of compression, quan-
tized filter stability and interpolation efficiency.

4. TEST SIGNALS

The proposed compression algorithm has been tested on
both simulated and experimental surface EMG signals.

4.1. Simulated EMG signals

Surface EMG signals were simulated with the model de-
scribed in [12]. This model simulates synthetic motor unit
action potentials generated by finite length fibers and de-
tected by surface electrodes. The volume conductor (i.e.,
the tissues separating the muscle fibers and the recording
electrodes) comprises the muscle, fat and skin tissues, sep-
arated by planar layers. The physical parameters of the
model were selected as in [12]. Signals were generated
as detected from the biceps brachii muscle at contraction
forces from 5% to 100% of the maximal force.

4.2. Experimental EMG signals

Experimental EMG signals were collected from the biceps
brachii muscle of six male subjects at contraction forces

from 10% to 70% of the maximal force. A bipolar EMG
detection system (inter-electrode distance 10 mm) was used
for signal detection. The signals were amplified (amplifier
with -3 dB bandwidth: 10-500 Hz), fed into a 12-bit acquisi-
tion board, and sampled at 2048 samples/s. Signal duration
was 15 s.

5. RESULTS

We developed a preliminary version of the proposed tech-
nique in Matlab, experimenting with the various parameters
of the model and we found that a frame size N of 1024
samples (which, at a sampling frequency of 1024 Hz, cor-
responds to one epoch of 1 s) and 4-16 LPC coefficients
determined optimal performance in terms of reconstruction
error of the selected features. Most signals could be ad-
equately modeled with only 6 coefficients, with errors in
the higher order spectral moments always below 10%; more
specifically, experiments showed that to faithfully preserve
mean and median frequency a 4-taps filter is usually suf-
ficient, while preserving skewness and kurtosis usually re-
quires more coefficients. This means that, with 10 LPC co-
efficients and the gain, saved as 4-bytes floating point and
no quantization, the compression factor of the encoded sig-
nal with respect to the downsampled original signal is ap-
proximately 1:35.

A commonly accepted measure of compression is de-
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fined as:

C = 100 · Lorig − Lcomp

Lorig
%, (9)

where Lorig, Lcomp are, respectively, the original and the
compressed file length; with the assumptions above regard-
ing the model order, C ≈ 97.1%.

The spectral parameters can be computed analytically
from the reconstruction filter in equation (8).

The simulated and experimental signals were encoded
with an AR(10) model. Table 1 shows the performance of
the algorithm when applied to the set of simulated EMG
signals while Table 2 reports the results obtained on the ex-
perimental signals.

Some of the experimental signals required filters with
more than 10 taps to maintain the distortion in higher-order
spectral moments below 10%. Experiments showed that in
those cases up to 16 taps (an AR(16) model) could be nec-
essary, possibly suggesting the adoption of an analysis-by-
synthesis approach, in which more taps are added until dis-
tortion is kept under a predefined threshold. Moreover, if the
waveform is to be preserved, a so-called hybrid technique,
as those commonly used for speech coding (e.g., CELP),
could be adopted.

6. CONCLUSIONS

In this paper we presented a technique for lossy coding of
EMG signals. The proposed algorithm is based on a simple
LPC procedure, along the lines of many algorithms com-
monly employed for speech coding. Despite the simplic-
ity of the technique, experiments proved that faithful re-
construction of relevant spectral parameters was obtained,
while guaranteeing compression gains of about 97.1% with
respect to the original downsampled uncoded signal.

Further development should take into consideration the
correlation between signals in multi-channel surface EMG
recordings.

7. REFERENCES

[1] P. J. Mork and R. H. Westgaard, “The association be-
tween nocturnal trapezius muscle activity and shoul-
der and neck pain,” European Journal of Applied
Physiology, vol. 92, no. 1–2, pp. 18–25, 2004.

[2] S. M. S. Jalaleddine, C. G. Hutchens, R. D. Strattan,
and W. A. Coberly, “ECG data compression tech-
niques - a unified approach,” IEEE Transactions on
Biomedical Engineering, vol. 37, no. 4, pp. 329–343,
Apr. 1990.

[3] G. Antoniol and P. Tonella, “EEG data compression
techniques,” IEEE Transactions on Biomedical Engi-
neering, vol. 44, no. 2, pp. 105–114, Feb. 1997.

[4] J. F. Norris and D. F. Lovely, “Real-time compression
of myoelectric data utilising adaptive differential pulse
code modulation,” Medical & Biological Engineering
& Computing, vol. 33, pp. 629–635, 1995.

[5] Alfonso Prieto Guerrero and Corinne Mailhes, “On
the choice of an electromyogram data compression
method,” in Engineering in Medicine and Biology
society. Proceedings of the 19th Annual International
Conference of the IEEE, Chicago, IL USA, Nov. 1997,
vol. 4, pp. 1558 – 1561.

[6] P. Wellig, Cheng Zhenlan, M. Semling, and G. S.
Moschytz, “Electromyogram data compression using
single-tree and modified zero-tree wavelet encoding,”
in Engineering in Medicine and Biology Society. Pro-
ceedings of the 20th Annual International Conference
of the IEEE, Hong Kong, China, Oct. 1998, vol. 3, pp.
1303–1306.

[7] J. A. Norris, K. Englehart, and D. Lovely, “Steady-
state and dynamic myoelectric signal compression us-
ing embedded zero-tree wavelets,” in Engineering in
Medicine and Biology Society. 23rd Annual Interna-
tional Conference of the IEEE, Oct. 2001, vol. 2, pp.
1879–1882.

[8] B. Visser, M. De Looze, M. De Graaff, and J. Van
Dieen, “Effects of precision demands and mental pres-
sure on muscle activation and hand forces in com-
puter mouse tasks,” Ergonomics, vol. 47, pp. 202–217,
2004.

[9] Omry Paiss and Gideon F. Inbar, “Autoregressive
modeling of surface EMG and its spectrum with appli-
cation to fatigue,” IEEE Transactions on Biomedical
Engineering, vol. 34, no. 10, Oct. 1987.

[10] Tohru Kiryu, Carlo J. De Luca, and Yoshiaki Saitoh,
“AR modeling of myoelectric interference signals
during a ramp contraction,” IEEE Transactions on
Biomedical Engineering, vol. 41, no. 11, pp. 1031–
1038, Nov. 1994.

[11] Roberto Merletti, Archil Gulisashvili, and
Loredana R. Lo Conte, “Estimation of shape
characteristics of surface muscle signal spectra from
time domain data,” IEEE Transactions on Biomedical
Engineering, vol. 42, no. 8, pp. 769–776, Aug. 1995.

[12] D. Farina and R. Merletti, “A novel approach for pre-
cise simulation of the emg signal detected by surface
electrodes,” IEEE Transactions on Biomedical Engi-
neering, vol. 48, pp. 637–646, 2001.

V - 632


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


