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Compression of surface EMG signals with algebraic code
excited linear prediction
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Abstract

Despite the interest in long timescale recordings of surface electromyographic (EMG) signals, only a few studies have focused on EMG
compression. In this paper we investigate a lossy coding technique for surface EMG signals that is based on the algebraic code excited linear
prediction (ACELP) paradigm, widely used for speech signal coding. The algorithm was adapted to the EMG characteristics and tested on
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oth simulated and experimental signals. The coding parameters selected led to a compression ratio of 87.3%. For simulated signals, the
ean square error in signal reconstruction and the percentage error in average rectified value after compression were 11.2% and 4.90%,

espectively. For experimental signals, they were 6.74% and 3.11%. The mean power spectral frequency and third-order power spectral
oment were estimated with relative errors smaller than 1.23% and 8.50% for simulated signals, and 3.74% and 5.95% for experimental

ignals. It was concluded that the proposed coding scheme could be effectively used for high rate and low distortion compression of surface
MG signals. Moreover, the method is characterized by moderate complexity (approximately 20 million instructions/s) and an algorithmic
elay smaller than 160 samples (∼160 ms).

2006 IPEM. Published by Elsevier Ltd. All rights reserved.
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. Introduction

Recordings of electromyographic (EMG) signals can have
uration of hours when muscle function needs to be contin-
ously monitored, as in the monitoring of working activities
15]. Compression of a large amount of data is necessary
n many situations, such as when EMG data are acquired
n a patient and sent remotely for processing and analy-
is (telemedicine) [19]. Surface EMG signals are usually
cquired at 12–16 bits/sample, with sampling rate ranging
rom 1 kHz to 10 kHz. In addition, several types of detection
ystems can be applied to the same subject and/or muscle,
eading to multi-channel recordings [13,18].

∗ Corresponding author. Tel.: +4596358821; fax: +4598154008.
E-mail address: df@hst.aau.dk (D. Farina).

Extensive work on signal compression has been performed
in related fields, such as in the electrocardiogram (ECG) [10]
or electroencephalogram (EEG) [2] research areas. However,
despite the importance of the potential applications, there
are still few studies dealing with the compression of sur-
face EMG signals. Norris and Lovely [17] investigated lossy
compression of EMG signals using adaptive differential pulse
code modulation (ADPCM), a technique commonly applied
to speech signals. Their technique achieved a reduction in bit
rate from 12 bits/sample to 4 bits/sample (compression fac-
tor ∼67%). Guerrero and Mailhes [7] compared the perfor-
mance of compression techniques commonly used for speech
signal coding (such as transform-based techniques compris-
ing discrete wavelet transforms, discrete cosine transform,
differential pulse code modulation, code excited linear pre-
diction, and multi-pulse coder) applied to EMG signals. The
use of wavelets has been suggested for intramuscular EMG
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signal compression [20]. The embedded zero-tree wavelet
(EZW) coding was also applied to surface EMG signals [16],
with compression ratios in the range 60–95%. More recently,
Carotti et al. [3] proposed an EMG signal compression tech-
nique based on autoregressive (AR) modeling. This technique
provides high compression ratios (over 97%) but it is not
applicable if the shape of the signal waveform has to be pre-
served after compression.

In this paper we modified a speech signal compression
technique that performs autoregressive (AR) modeling fol-
lowed by analysis-by-synthesis quantization of the residual
error to allow for reconstruction of the original waveform.
This coding technique aims to achieve a low algorithmic
delay and low bit rate while preserving to a sufficient degree
of accuracy both the waveform of the signal and important
EMG variables related to the time (such as the average rec-
tified value, ARV, and the root mean square, RMS) and the
spectral domain representation of the signal.

2. Methods

2.1. Compression algorithm

The proposed coding technique is based on the algebraic
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periodicity of voiced speech segments, is then modelled by
means of the long-term predictor (LTP) filter (Fig. 1).

The two predictor filters ensure that the signal spectrum
is faithfully reconstructed but the signal waveform cannot
be correctly recovered unless the proper excitation signal
is conveyed to the decoder. For this purpose, the residual
error signal from the two filters is vector quantized with
an analysis-by-synthesis approach that minimizes the mean
squared error (MSE) between the original and the synthesized
signals. The quantization index is sent together with the filter
parameters to the decoder.

2.1.1. ACELP coder for EMG signals
The GSM-AMR implementation of the ACELP coder

compresses speech signals at eight bit rates ranging from
4.75 kb/s to 12.2 kb/s. In this study we adapted the 12.2 kb/s
rate to the EMG application. The EMG signal was divided
into 160-sample frames without pre-processing since this
ensured a good trade-off between coding delay and coding
performance. Tests, not shown, were performed with frame
size up to 1024 samples and resulted in minimal differences
in compression performance. Each EMG 160-sample frame
was further divided into 40-sample subframes corresponding
to approximately 39 ms. AR parameters were then computed
on these subframes. For speech applications, the GSM-AMR
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ode excited linear prediction (ACELP) method [1], which is
idely applied for coding speech signals, e.g., in the global

ystem for mobile adaptive multi rate (GSM-AMR) speech
oder [4]. For speech applications, the ACELP coder com-
utes the parameters of an AR model of the input speech
ignal (sampled at 8 kHz, 12 bits/sample) and transmits the
odel parameters. The all-pole filter corresponding to the AR
odel captures the shape of the power spectrum of the sig-

al or, in the time domain, the short-term correlation among
amples and is thus called short-term predictor (STP) filter.
ong-term correlation, such as that related to the signal quasi-

ig. 1. Block diagram of the CELP synthesis model. The diagram depicts
ignal from the fixed codebook is selected using the quantization index sen
[n] is combined with the output of the LTP filter v[n] which includes filtered
econstructs the signal.
CELP coder applies high-pass filtering (cut-off frequency
0 Hz) and amplitude downscaling by a factor of 2, which
re not appropriate for EMG signals.

It has been previously shown that the power spectral
oments of the surface EMG can be obtained with negligible

rror using a 10-tap all pole filter [3], thus a 10-order STP was
hosen. AR coefficients are estimated from the first and third
ubframes and interpolation is applied for the model param-
ters of the remaining subframes. The AR coefficients are
omputed from the signal autocorrelation [12]. Since the vari-
nce of the estimate of the autocorrelation function decreases

in blocks and their interaction when a signal is synthesized. An excitation
encoder, amplified by the corresponding gain to generate the signal c[n].

siduals to make a proper excitation signal for the STP synthesis filter which
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with the number of samples used for its estimate, we used
a 240-sample window for estimation of the autocorrelation.
Prior to computing the STP filter’s parameters, the signal was
windowed with a modified Hamming asymmetric window.
For the first filter, the window was chosen to weigh more the
samples in the first half of the frame, while for the second
filter more weight was given to the second half of the frame.

Finally, the floating point AR coefficients were trans-
formed into the line spectral pairs (LSP) representations [9]
to assure quantization and interpolation efficiency as well as
filter stability. The two STP filters are then jointly quantized
with split matrix quantization of a first-order moving average
(MA) prediction residual [21]. The GSM-AMR speech coder
also uses a 40-sample overhead to estimate the STP coeffi-
cients but this introduces a 40-sample delay at the decoder
that is undesirable for EMG signals and thus has been omit-
ted.

The LTP filter models longer term signal correlations and
is parametrized as a gain and a delay (which, for speech,
corresponds to the quasi-periodicity of voiced sounds due
to vocal cord vibration). The parametrization of the LTP fil-
ter is performed by searching a number of past excitation
residual signals (adaptive codebook) in two stages: first an
open-loop estimate of the pitch is computed by inverse fil-
tering the original signal with the LPC coefficients, then
closed-loop pitch search is performed around the open-loop
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Table 1
Bit allocation for a 160-sample frame (see text for definition of parameters)

Parameter Subframe Total

1 2 3 4

LSF 38
Adaptive codebook 9 6 9 6 30
Adaptive gain 4 4 4 4 16
Algebraic codebook 35 35 35 35 140
Algebraic gain 5 5 5 5 20
Total bits/frame 244

enhance the perceived subjective quality of the reconstruction
at the expense of signal-to-noise ratio (SNR) was omitted for
the EMG application.

2.2. Test signals

The proposed compression algorithm has been tested on
both simulated and experimental surface EMG signals.

2.2.1. Simulation of surface EMG signals
Surface EMG signals were simulated with the model

described in [6]. The model produces synthetic motor unit
action potentials generated by muscle fibres of finite length
and detected by surface electrodes. The volume conductor
comprises the muscle, fat and skin tissues, separated by planar
layers. The physical parameters of the model were selected
as in [6]. Sixty-five motor units with number of fibres in the
range 50–600 (uniform distribution) were located in random
positions inside the muscle. The motor units were recruited
according to the size principle [8] and were assigned con-
duction velocities with Gaussian distribution (mean 4 m/s,
standard deviation 0.3 m/s). The recruitment thresholds and
modulation of discharge rate were simulated as previously
described [11] with contraction forces in the range 10–70% of
the maximal voluntary contraction (MVC) force (20% MVC
increments). For each contraction force, five signals were
g
i

2

b
2
t
t
t
f
e

t
1
a
b
r
1

stimate. Closed-loop pitch search is based on the analysis-
y-synthesis approach and is aimed at minimizing the final
econstruction error. Pitch search is conducted in the range
0–123 samples, i.e., ∼20–120 ms. The LTP delay is coded
or the first and third subframes while for the other two sub-
rames only the (usually small) difference with respect to
he preceding subframe is coded. Results (not shown) on
MG proved that, after LTP prediction, the residual signal
as white and with a lower energy than the input STP resid-
al.

After STP and LTP prediction, the 40-sample subframe
esidual excitation is vector quantized by exhaustive search
n a codebook (the innovative codebook) that is designed to
inimize the overall reconstruction distortion. To speed up

uantization and reduce complexity, ACELP uses an alge-
raic codebook where the reconstruction vectors consist of
few unitary pulses, the number of which depends on the

esired output bit rate, so that the complex operation of vec-
or quantization consists in finding the proper position of
he pulses to minimize reconstruction distortion as measured
y MSE. The quantization indices thus represent the posi-
ion and sign of those pulses. A 35-bit codebook was used
o code the position and sign of 10 such pulses. A sum-

ary of the overall bit allocation for one frame is reported in
able 1.

The decoder inverts the process and reconstructs the signal
y inverse filtering the excitation signal from the innovative
odebook through the LTP and STP filter. Due to filter mem-
ry the reconstructed signal is continuous across subframes.
he post-processing stage used by the GSM-AMR coder to
enerated with random allocation of the motor unit positions
n the muscle.

.2.2. Experimental procedure
Surface EMG signals were collected from the biceps

rachii muscle of six male subjects (age, mean ± S.D.,
5.3 ± 3.2 years) with a bipolar electrode system (bar elec-
rodes, 5 mm long, 1 mm diameter, 10 mm interelectrode dis-
ance). The subject’s arm was placed in an isometric brace and
he forearm was fixed at 120◦ (180◦ being full extension of the
orearm). The MVC was estimated as the maximum torque
xerted in three trials separated by 3-min rest in between.

Each subject then performed four 15-s contractions at
orque levels 10–70% MVC (20% MVC increments) with
0-min rest between contractions. The EMG signals were
mplified (−3 dB bandwidth: 10–500 Hz), fed into a 12-
it acquisition board, and sampled at 2048 samples/s. The
ecorded signals were off-line band-pass filtered in the range
0–400 Hz and downsampled to 1024 Hz before compres-
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Table 2
Average (±S.D.) reconstruction errors for simulated EMG signals

Force level Waveform Amplitude variables Spectral features

(% MVC) MSE (Eq. (6)) % ARV (Eq. (2)) % RMS (Eq. (2)) % fmean (Eq. (3)) % fmed (Eq. (4)) % Skewness (Eq. (5))

10 8.28 ± 0.66 7.49 ± 1.46 4.27 ± 0.69 1.37 ± 0.34 1.70 ± 0.47 12.05 ± 2.92
30 11.31 ± 0.22 3.03 ± 0.23 3.16 ± 0.19 1.27 ± 0.31 1.25 ± 0.40 6.41 ± 2.53
50 13.12 ± 2.30 5.19 ± 2.09 5.10 ± 2.10 1.15 ± 0.38 0.95 ± 0.70 8.72 ± 4.04
70 11.38 ± 1.15 3.90 ± 1.06 3.64 ± 0.73 1.12 ± 0.61 1.46 ± 0.81 6.84 ± 3.04

For each force level, results are reported over the five signals simulated in the same conditions with random location of the motor units within the muscle (see
text for details). MSE: mean square error; ARV: average rectified value; RMS: root mean square value; fmean: mean frequency; fmed: median frequency.

sion. The compression factor was computed with reference
to 1024 Hz sampling rate.

2.2.3. Signal analysis
With the selected parameters, a fixed compression factor

of 87.3% was achieved in all conditions. This can be increased
with changes in the implementation of the algorithm but in
this study only results with this compression factor are pre-
sented. Compression factor was defined as:

C = 100
Linput − Loutput

Linput
% (1)

where Linput and Loutput are the original and the compressed
file lengths, respectively.

RMS, ARV, mean power spectral frequency, median fre-
quency and spectral skewness [14] were estimated from the
original and compressed EMG signals. ARV and RMS were
computed as:

ARV = 1

M

M∑
n=1

|s[n]| RMS =
√√√√ 1

M

M∑
n=1

s2[n] (2)

where M is the number of signal samples.
Mean and median frequencies were computed as:

f

f∑

w
q

The normalized third central moment, i.e., the skewness,
µ3, is defined as:

µ3 = MC3

M
3/2
C2

=
∑N

i=1(fi − fmean)3P[fi]�f(∑N
i=1(fi − fmean)2P[fi]�f

)3/2 (5)

Spectral variables were computed from 1-s signal epochs
using the periodogram estimator of the power spectrum. The
relative change in signal variables with compression was used
to quantify the modifications in signal features due to the loss
of information. The waveform distortion (D) introduced by
the compression/decompression procedure was defined as the
normalized percent MSE:

D = 100

∑N
i=1(sorig[i] − srec[i])2

∑N
i=1s

2
orig[i]

(6)

between the original signal sorig and the reconstructed signal
srec.

3. Results

Table 2 shows the performance indexes for compression
of the simulated EMG signals at the four excitation levels.
Results are reported as average and standard deviation over
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mean =
∑N

i=1fiP[fi]�f∑N
i=1P[fi]�f

(3)

med

i=1

P[fi]�f =
N∑

i=fmed

P[fi]�f = 1

2

N∑
i=1

P[fi]�f (4)

here �f = (fi − fi−1) is the constant separation between fre-
uency bins.

able 3
verage (±S.D.) reconstruction errors for experimental EMG signals

orce level Waveform Amplitude variables

% MVC) MSE (Eq. (6)) % ARV (Eq. (2)) % RMS (Eq

0 9.17 ± 1.55 5.30 ± 0.70 4.30 ± 1.3
0 6.59 ± 1.80 2.78 ± 1.12 2.29 ± 1.2
0 5.95 ± 1.40 2.33 ± 1.40 1.99 ± 0.9
0 5.26 ± 1.20 2.05 ± 1.65 1.72 ± 0.5

or each force level, results are reported over six subjects. MSE: mean squa
requency; fmed: median frequency.
he five signal realizations for each excitation level. Fig. 2
hows an example of compressed experimental EMG signal
nd Table 3 reports performance indexes for the experimental
ignals. Percent variation of all indexes is below 10%. The
econstruction error and relative error in amplitude variables
re in general larger in simulation than for experimental sig-
als while mean and median frequency have smaller error for
imulated than experimental signals.

Spectral features

% fmean (Eq. (3)) % fmed (Eq. (4)) % Skewness (Eq. (5))

5.69 ± 2.21 3.10 ± 1.05 6.87 ± 3.94
3.47 ± 0.88 2.24 ± 1.20 5.08 ± 0.65
2.88 ± 0.49 1.83 ± 0.88 5.77 ± 0.95
2.94 ± 0.83 1.95 ± 0.58 6.07 ± 1.37

; ARV: average rectified value; RMS: root mean square value; fmean: mean
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Fig. 2. A portion of an experimental EMG signal prior to compression and
after decoder’s reconstruction. The signal corresponds to a 70% MVC con-
traction and the reconstruction led to MSE of 3% with respect to the original
signal (with compression factor 87.3%).

4. Discussion

We adapted a coding technique widely used for speech
compression to the compression of surface EMG signals. The
results on simulated and experimental signals showed that the
method achieves high compression factors with limited signal
distortion.

In some applications, the amplitude variables and spectral
features of the surface EMG signal are the only relevant infor-
mation. In this study, it has been shown that these variables
can be preserved with a percentage error smaller than 10%
for experimental recordings. This error is in the same range
of values of the standard deviation of estimation of amplitude
and spectral variables. For example, Farina and Merletti [5]
showed, on synthetic signals, that mean and median power
spectral frequencies can be estimated from surface EMG with
a relative standard deviation of 3% and 7% of the true value,
respectively. Thus, the variability of spectral variable esti-
mates due to the stochastic nature of the surface EMG are
larger than the percentage errors obtained in this study after
compression by a factor of 87.3%.

If only amplitude and spectral variables are of interest,
however, a simpler compression scheme may be preferable.
We previously showed that spectral moments of the surface
EMG can be preserved with a relative error smaller than 10%
with compression factors up to 97% [3]. With the method
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In conclusion, the proposed approach allows for almost
real time (∼160 ms delay) coding and decoding of EMG
signals with average compression factors of 87.3% and recon-
struction error of the waveform, defined as in Eq. (6), limited
to less than 10% in experimental signals. The error in estima-
tion of time- and spectral-domain EMG variables is consid-
ered acceptable since it is comparable with the variability in
estimation of these variables. The method can thus be effec-
tively used in long-term recordings, such as those performed
over many hours in ergonomics and occupational medicine.

Acknowledgements

This work was partially supported by grants from Com-
pagnia di San Paolo, Fondazione CRT, Torino, Italy (Roberto
Merletti) and by the Danish Technical Research Council
(Dario Farina).

References

[1] Adoul JP, Mabilleau P, Delprat M, Morisette S. Fast CELP coding
based on algebraic codes. Proc IEEE Int Conf Acoustics, Speech,
Signal Process 1987;12:1957–60.

[2] Antoniol G, Tonella P. EEG data compression techniques. IEEE
Trans Biomed Eng 1997;44:105–14.

[

[

[

[

[

[

roposed by Carotti et al. [3], however, only the spectral shape
as preserved which is not acceptable in applications where

urther analysis of the signal is desirable after compression.
he present approach preserves the signal shape at the price
f a lower compression factor than in [3] (87.3% vs. 97.1%
ith similar errors in EMG variables after compression).
One of the main advantages of the proposed coding

cheme is that the algorithmic delay is very small. The
ecoder waits for a frame to be completely received before
ynthesizing the reconstruction. In most transform-based
echniques, such as DCT-based methods, longer blocks
f data are packed and transformed prior to quantization
nd entropy coding, thus suffering from higher algorithmic
elays.
[3] Carotti ESG, De Martin JC, Farina D, Merletti R. Linear predic-
tive coding of myoelectric signals. Proc IEEE Int Conf Acoustics,
Speech, Signal Process 2005;5:629–32.

[4] Ekudden E, Hagen R, Johansson I, Svedberg J. The adaptive multi-
rate speech coder. Proc IEEE Workshop Speech Coding 1999:
117–9.

[5] Farina D, Merletti R. Comparison of algorithms for estimation of
EMG variables during voluntary isometric contractions. J Elec-
tromyogr Kynesiol 2000;10:337–49.

[6] Farina D, Merletti R. A novel approach for precise simulation of
the EMG signal detected by surface electrodes. IEEE Trans Biomed
Eng 2001;48:637–46.

[7] Guerrero AP, Mailhes C. On the choice of an electromyogram
data compression method. Proc IEEE Int Conf Eng Med Biol Soc
1997;4:1558–61.

[8] Henneman E. Relation between size of neurons and their suscepti-
bility to discharge. Science 1957;126:1345–7.

[9] Itakura F. Line spectrum representation of linear predictive coeffi-
cients of speech signals. J Acoust Soc Am 1975;57:535.

10] Jalaleddine SMS, Hutchens CG, Strattan RD, Coberly WA. ECG data
compression techniques—a unified approach. IEEE Trans Biomed
Eng 1990;37:329–43.

11] Keenan KG, Farina D, Maluf KS, Merletti R, Enoka RM. Influence
of amplitude cancellation on the simulated surface electromyogram.
J Appl Physiol 2005;98:120–31.

12] Makhoul J. Linear prediction: a tutorial review. Proc IEEE
1975;63:561–80.

13] Merletti R, Farina D, Gazzoni M. The linear electrode array:
a useful tool with many applications. J Electromyogr Kinesiol
2003;13:37–47.

14] Merletti R, Gulisashvili A, Lo Conte LR. Estimation of shape char-
acteristics of surface muscle signal spectra from time domain data.
IEEE Trans Biomed Eng 1995;42:769–76.

15] Mork PJ, Westgaard RH. Long-term electromyographic activity in
upper trapezius and low back muscles of women with moderate
physical activity. J Appl Physiol 2005;99:570–8.



6 E. Carotti et al. / Medical Engineering & Physics xxx (2006) xxx–xxx

[16] Norris JA, Englehart K, Lovely D. Steady-state and dynamic myo-
electric signal compression using embedded zero-tree wavelets. Proc
IEEE Int Conf Eng Med Biol Soc 2001;2:1879–82.

[17] Norris JF, Lovely DF. Real-time compression of myoelectric data
utilising adaptive differential pulse code modulation. Med Biol Eng
Comput 1995;33:629–35.

[18] Staudenmann D, Kingma I, Stegeman DF, van Dieen JH. Towards
optimal multi-channel EMG electrode configurations in muscle force
estimation: a high density EMG study. J Electromyogr Kinesiol
2005;15:1–11.

[19] van Dijk H, Hermens HJ. Distance training for the restoration of
motor function. J Telemed Telecare 2004;10:63–71.

[20] Wellig P, Zhenlan C, Semling M, Moschytz GS. Electromyogram
data compression using single-tree and modified zero-tree wavelet
encoding. Proc IEEE Int Conf Eng Med Biol Soc, Hong Kong,
Chin 1998;3:1303–6.

[21] Xydeas CS, Papanastasiou C. Matrix quantization of LPC parame-
ters. IEEE Trans Speech Audio Proc 1999;7:113–25.


	Compression of surface EMG signals with algebraic code excited linear prediction
	Introduction
	Methods
	Compression algorithm
	ACELP coder for EMG signals

	Test signals
	Simulation of surface EMG signals
	Experimental procedure
	Signal analysis


	Results
	Discussion
	Acknowledgements
	References


