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Abstract—Mobile phones are often found in cars, for instance
when they are used as navigation assistants. This work propose
to use their camera, which is often already pointed to the road, to
perform some low-complexity analysis of the driving context, with
the final aim to detect potentially unsafe conditions. Since content
understanding algorithms are typically too complex to run in real
time on a mobile device, a driving event detection algorithm is
presented based on the side information available from video
encoders, which are a highly optimized application in mobile
phones. A set of interesting and easy-to-extract features has been
identified in the side information and then further reduced and
adapted to the specific events of interest. A detection algorithm
based on support vector machines has been designed and trained
on several hours of video annotated by a human operator to
extract the events of interest. The detection algorithm is shown
to achieve a good identification rate for the considered events
and feature sets. Moreover, results also show that the use of a

stereoscopic camera significantly improves the performance of
the detection algorithm in most cases.

I. INTRODUCTION

Most of the people carry mobile phones with them at all

times, including when they are in a car. Sometimes, mobile

phones are also used as navigation assistants to provide

directions. In this case, the device is almost always placed

on a support attached to the dashboard or the windscreen.

Therefore, it would be extremely interesting if such a device,

with the rear camera typically pointing to the road, could be

used to detect the driving context and alert in real time the

driver about potentially unsafe conditions.

Although the idea is interesting in theory, in practice many

algorithms developed for content understanding in such con-

ditions (see, e.g., [1]) may be too computationally demanding

to run on the mobile phone in real time, since the processing

power of mobile devices is typically limited.

Despite those limitations, a particular family of heavy

algorithms, i.e., video coding algorithms, can typically be

run on mobile phones since the CPU and other specialized

hardware has been optimized to run them in real time, so that

users can record their video using such devices.

This work argues that some of the information produced

by running differential encoding with motion compensation

algorithms, which are the basis of all the widespread video
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compression techniques, could be used to gain some insight

in the semantic of the scene when applied to a video captured

from a camera pointed to the road. Even more, if stereoscopic

devices, already commercially available on the market as

smartphones, are used to capture the images, much better per-

formance can be achieved since a second viewpoint provides

additional information that cannot be easily detected from one

viewpoint. Note also that, typically, the cost of mobile phones

with stereoscopic capabilities is comparable with many non-

stereoscopic good-quality smartphones, which many people

are eager to buy in any case.

The underlying idea of this work is that the motion estima-

tion process produces enough information to get at least a basic

understanding of the driving context, so that the driver can be

alerted in case of specific situations happen. Some preliminary

results already showed that it is possible, in principle, to

detect simple situations for the case of monoscopic video [2].

In this work we extend the approach to a larger and more

interesting set of events and we investigate the possibility to

use a stereoscopic camera, that we expect to be increasingly

common on future mobile devices, to improve the accuracy of

the detection algorithms. The context information is extracted

by means of a classification algorithm, i.e., a linear support

vector machine (SVM) [3], [4], with minimum complexity,

using the motion vectors as input features.

Moreover, we also show that in addition to motion vectors,

other features can also contribute to improve accuracy, such

as the total frame size and encoding distortion, as well as

the characteristics of each macroblock, such as the number

of motion vectors that have been used to encode it or the

distortion of each macroblock with respect to the original

video sequence.

Note also that, although future cars, especially the more

expensive ones, are expected to include an increasing number

of cameras to support the driver for specific tasks, the pre-

sented solution is suitable for any car regardless of the on

board sensors, since it can run on the mobile device without

any additional support.

Several hours of stereoscopic video have been collected

using a mobile phone attached to the windscreen of a car

driving in different environments, e.g., urban, highway and

motorway. Then, sequences have been manually annotated to

identify interesting events in the video. This database has then

been used to train the SVM-based algorithm to identify the



Fig. 1. Scatter plot of the frame size and distortion values for the static
(black) and moving (grey) conditions. Darker greys are due to combinations
found in both static and moving conditions (e.g., across the border between
the two point clouds).

events. The results of these experiments are very promising in

terms of event detection accuracy.

The paper is organized as follows. Section II presents an

investigation of the characteristics of some of the features that

can be easily extracted as a side information from a video

encoder and how to select them. Then, Section III explains

how videos have been annotated and the resulting values have

been used to train the proposed event detection system. The

event detection algorithm is presented in Section IV, followed

by simulation results in Section V. Finally conclusions are

drawn in Section VI.

II. FEATURE ANALYSIS AND SELECTION

This section presents a preliminary analysis of the charac-

teristics of very simple features that can be easily extracted

as side information from a state-of-the-art video encoder, i.e.,

H.264/MPEG-4 AVC [5], such as frame and macroblock sizes

and encoding distortion (MSE), macroblock types and motion

vector components.

A simple example shows how some of those features can be

effectively used to detect simple events. Consider, for instance,

the average frame size and encoding distortion of each frame.

Fig. 1 shows a scatter plot of those values, colored in black

if the car is static or in grey if the car is moving. Although it

appears intuitive that static scenes should require less bits to

encode them, consider that there might be conditions in which

such a result is not so obvious.

For instance, if the car is stopped at a traffic light and other

cars cross the intersection, some motion, that can also have

high intensity, may take place (the darker grey points between

the black and grey clouds of points in Fig. 1). A sample of this

situation is represented in Fig. 2 where a van is moving across

the road while the car is stopped at the traffic light. Therefore,

the frame size and distortion alone might not be suitable

to reliably detect the movement in all cases. However, the

availability of information for each single macroblock could

help to better distinguish the moving from the static condition

in such a case, e.g., noticing that the amount of macroblocks

Fig. 2. Crossing vehicles at a traffic light stop. Several high-magnitude
motion vectors are present even if the car is not moving.

with higher size and MSE is limited to only a fraction of the

total number.

However, a more systematic approach is needed to auto-

matically analyze the relevance of the information that can be

easily extracted as a side information from the video encoding

process, such as the motion vector components of different

macroblocks in the image. The motivation of an intelligent

selection of information among the large available amount

is twofold: maximizing the performance of the detection

algorithm, as well as reducing its complexity.

Many different algorithms have been proposed in the lit-

erature concerning pattern analysis and classification for the

important problem of feature selection. Several criteria have

been used including, for instance, mutual information (MI) [6]

between features and classes (which, in our case, correspond

to the events that we want to detect).
The mutual information of two random variables is a

quantitative indication of the statistical dependence between

the two variables, that is the reduction in the uncertainty (as

measured by Shannon’s entropy) about one random variable

yielded by the knowledge of the other one [7].

In principle, given a set of n features F =
(X1, X2, . . . , Xn) and a target class C, the ultimate

goal is to find the subset S ⊂ F for a given m < n which

bears the highest amount of information I about the class C,

i.e., which has the largest dependency on the target class (the

so called max-dependency):

argmax
S⊂F

I(S = (Xk1
, Xk2

, . . . , Xkm
);C). (1)

When m = 1 the solution is trivial, i.e., the feature whose

mutual information with the class is maximal. If more than

one feature are involved, i.e., m > 1, the mutual infor-

mation between the feature should be considered because

the information of different features may partially overlap.

Thus, maximizing Eq. (1) in this case is extremely difficult

in practice, especially if m is large. Therefore, often the

max-dependency problem in Eq. (1) is approximated with the

simpler max-relevance:

argmax
S⊂F

1

|S|

∑

Xi∈S

I(Xi;C), (2)



TABLE I
FRAME-LEVEL FEATURES AVAILABLE AT LOW COST.

Name Type

Frame size integer
Encoding distortion (MSE) float

TABLE II
MACROBLOCK-LEVEL FEATURES AVAILABLE AT LOW COST.

Name Value type

Size integer
MSE with respect to original float

Motion vector components (x,y) fractional (quarter-pel precision)
Motion vector magnitude float (computed from x and y)
MB type enumeration
Number of MVs per MB integer

TABLE III
EVENTS TO DETECT.

Event Description Possible Probability
values of value

Moving Car is moving yes / no 90.4% (yes)
Lane change Car is changing lane yes / no 2.0% (yes)
Change direction Direction when lane left / right 48.2% (left)

change is present
Queue Many cars in yes/no 6.0% (yes)

front of the camera

i.e., taking the subset of the m features that individually

maximizes the mutual information exchanged with the class,

ignoring the mutual information among the features which,

of course, would decrease the joint mutual information with

the class. Although the max-relevance criterion may look

simple, it proved to be reasonably effective for our aims. To

compute mutual information we estimated all the probability

mass functions by frequency counts on a training set, i.e., our

test video sequences.

We considered features at both the frame and the mac-

roblock level. They are listed in Table I and II for the frame

and macroblock level respectively. All of them can be easily

extracted during the encoding process. The events of interests

considered in this work are listed in Table III which also shows

the probability of occurrence of the possible values estimated

by means of frequency counts. Note that the direction of the

lane change is computed only when a lane change happens.

Fig. 3. Motion vectors in a sample scene when the car moves along the
road.
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Fig. 4. Mutual information between the magnitude of each motion vector
and the moving event.
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Fig. 5. Mutual information between the size of each macroblock and the
moving event.
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Fig. 6. Mutual information between the direction of each motion vector and
the change in the direction of the car.

A mutual information value between features at the mac-

roblock level and the events of interest can be computed,

and the result can be graphically shown using different grey

levels. These values are shown in Figures 4, 5, 6 for some

combinations of features and events. Brighter colors represent

higher mutual information values.

Figure 4 shows that the contribution of the magnitude of

each macroblock to the detection of the motion event is high

and almost equal from the sides, while in the central part the

contribution is lower. This is due to perspective projection of

the video scene on the camera sensor. When the car is moving

forward, the majority of the motion vectors are located at the

sides, since they are the part that presents higher apparent



motion due to the perspective. For instance, note the trees at

the road size in the sample image shown in Fig. 3. The same

image also shows that the contribution of the motion vectors

present on the road surface are limited, probably due to the

uniformity of the road surface that does not allow to compute

motion vector information related to the actual camera motion

in the real world.

Figure 5 shows that also macroblock sizes can be an

interesting indicator. Large macroblock sizes suggest more

difficulty in efficiently encode the residual information. There-

fore, car motion is more likely to happen. The more difficult

objects to encode are typically the one at the road side, hence

the higher MI value in those areas.

In Fig. 6 the direction of the motion vectors is considered

to determine the change in the direction of the car, i.e., left or

right. As it can be expected, nearly all macroblocks equally

contribute to this decision. In fact, when the car is changing

lane or it is turning, the image approximately presents an

apparent global motion that results into motion vectors spread

over the whole picture, all of them with approximately the

same direction.

The previous few examples showed that the MI approach

can reliably be used to determine the macroblocks in the image

that provide the highest contribution in identifying the event of

interest. Moreover, MI is extremely valuable since it provides

a quantitative measure of the contribution of each feature to

the detection of the events of interest. MI provides guidance

to perform a smart selection of macroblock used to identify

a given event, as well as to reduce the number of features

needed to perform the detection. This is important since the

number of macroblocks for each frame is in the order of a

thousand and the video frame rate can be high, e.g., about

30 frames per second. Thus, the MI value is used to sort the

macroblocks a priori so that only a subset of them is used

in the detection algorithm. The operation is repeated for each

event of interest.

III. VIDEO ANNOTATION

In order to train the detection algorithm a large set of

features-class pairs must be used. Therefore, video sequences

have been manually inspected and annotated for the presence

of the events of interest in the video by marking all the frames

in which the event is present. For instance, for the case of the

moving event, all the frames in which the car is moving have

been marked as “yes” and the remaining ones as “no”.

To efficiently perform this operation a software tool, named

Anvil [8], has been used. The software, written in Java, has

been specifically developed for the purpose of annotating mul-

timedia sequences. Although it has been originally developed

for speech and audio annotation, it also supports video and it is

extremely flexible in defining the various event types that can

be inserted in the annotation. All the configuration is based on

XML files and it can also be set up by means of the graphical

user interface. Fig. 7 shows a screenshot of the program, in

which the bottom part shows a sample annotation of a segment

of the video.

The program can export the result of the annotation in text

files that can be later processed by means of some scripts that

we developed for the purpose of correctly associating events

and features of each single frame.

IV. DETECTION ALGORITHM

We employed a discriminative model, based on a binary

linear Support Vector Machine (SVM) [3], [4]. For each event

we try to detect, we map the two possible outcomes on the

labels −1,+1, Then, a set of instance-label pairs has been

generated on the basis of the annotation of the video. The

training phase consists in solving the unconstrained optimiza-

tion problem typical of the linear support vector machines. For

this purpose, we employed the library described in [3]. The

result of the previous step is a vector of weights to apply to

the value of each feature to perform the classification.

Solving the previous optimization problem is computation-

ally heavy especially if a high number of frames are involved,

as in our case (about half a million). However, the algorithm

need to be run only once. The process has been repeated for

different feature sets and different events. Once the vector

of weights has been determined, binary classification can be

performed with very low complexity, by simply computing

the value resulting from the application of the weights to the

features and then using a zero threshold to decide between the

two labels.

V. RESULTS

The video sequences have been acquired by means of a

mobile phone (HTC Evo 3D) with a stereoscopic camera

fixed to the windscreen of a car. Several scenarios have been

considered: urban, highway and motorway. More than four

hours of video have been collected.

The video has been captured at high quality, 1280×720

pixels, 30 frames per second (fps), in stereoscopic mode.

Then, the video has been cropped to avoid the uninformative

part, i.e., the dashboard of the car, that does not change

over time. Finally, the video has been compressed using the

standard AVC test model software version JM11 [9] with a

fixed quantization parameter equal to 28, using only I and

P frames and GOP size equal to 30 frames. To avoid delay

and additional complexity, B frames have not been used. The

encoding software has been modified to extract the features of

interest, e.g., macroblock size and motion vector components,

during the encoding process. For the stereoscopic video case,

the encoder has been adjusted to encode each right frame as

a prediction with respect to the left one. Therefore, motion

vectors for the right image constitute the information needed

for disparity compensation. Although motion estimation may

provide results unrelated to the actual disparity of the real

objects present in the video scene, such “disparity” vectors

proved to be sufficient to achieve interesting results for event

detection. Note that we purposely avoided to use two refer-

ences for the right frame, i.e., the right past frame and the

current left frame. In this way simpler prediction algorithms



Fig. 7. Sample screenshot of the Anvil annotation tool. Content of the windows, from top left: log, image, event editing and annotation.

mechanisms and hardware can be used, therefore widening the

applicability of our system to more devices.

We tested our algorithm by means of a 10-fold stratified

cross-validation over a set of 451,980 frames. In other words,

10 cycles of training and testing are performed. Each time,

about 90% of the dataset has been used as training data and

the remaining part has been used to assess the performance

of the generated SVM. This technique is typically employed

to test the performance of learning algorithms when there is

no clear subdivision between training and test sets. In our

experiments each video has its peculiar characteristics, such

as the driving environment, thus all the data have to be used.

The data is automatically separated, each time, in training and

testing by the cross-validation method.

The detection performance has been assessed in terms of

the accuracy, precision and recall metrics. The accuracy value

indicates how many times the classifier is right on average.

More formally,

Accuracy =
(True positives) + (True negatives)

(Number of instances)
.

While the accuracy shows the average performance of the

classifier, i.e., the average identification rate, both precision

and recall complement this information. The formal definition

of precision is:

Precision =
(True positives)

(True positives) + (False positives)
,

i.e., it measures the fraction of times the event of interest is

identified and the event is actually occurring. The recall metric,

instead, computes the fraction of occurring events actually

identified by the classifier, i.e.,

Recall =
(True positives)

(True positives) + (False negatives)
.

High recall values imply that, if an event occurs, it is very

likely that the classifier will identify it. High precision, instead,

indicates that most of the time the classifier is right when it

decides that an event is taking place.

In the following, the most significant results are shown for

some of the features available at the macroblock level. For

each frame, we considered 200 features at the macroblock

level, selected according to the MI criteria described at the

end of Section II. Table IV shows the performance results in

terms of accuracy, precision and recall for some interesting

combinations of features and events. Note that, in all cases, in

addition to the features specified in the table, the frame size

and its total distortion (computed as the MSE with respect to

the uncompressed version) have always been included as two

additional features in the set. First, the case of monoscopic

video has been considered. The monoscopic video is derived

from the stereoscopic one by considering the left image only.

Results in Table IV show that, for the specific combination

of chosen features and events, significantly high values can

be achieved in terms of all the three previous metrics, i.e.,

accuracy, prediction and recall.

We also experimented with the stereoscopic video to under-

stand how much the addition of a second view can contribute

to the performance of the detection algorithm. The expectation

is that the relation with the first view (i.e., disparity informa-

tion, although coarse) allows to detect information that cannot

be easily extracted from a single view. In this second case,

100 features come from the left frame and 100 from the right

frame. As in the previous experiment, the left and right image

sizes and their total distortion are also included in the feature

set. Therefore, the complexity is similar to the previous case.

Results are shown in Table V. Significant improvements can be

achieved by means of a second view (the difference in shown

in brackets to simplify comparisons) for most of the events.

This can be attributed to the fact that the disparity information

can effectively provide additional indications, e.g., about the

different depth of the objects in the scene. These cues probably

make some the events of interest easier to detect. A decrease

of precision is observed for the case of the moving event only,

which is however compensated by the increase of the recall.

Since it is highly unlikely that events change their status

at every frame, we also considered the case in which the

detection of the event is attempted on a set of frames rather

than a on single frame in isolation. For instance, a car which

is changing lane takes a certain time to perform the operation,

and it is not necessary to the detect the start and the end of



TABLE IV
PERFORMANCE OF THE DETECTION ALGORITHM FOR THE MONOSCOPIC

CASE, ONE FRAME AT A TIME. VALUES EXPRESSED AS A PERCENTAGE.

Event Features Accuracy Precision Recall

Moving mvx 95.8 91.3 72.0
Lane change mvx 96.1 98.0 99.9
Change direction mvx 98.9 99.9 99.1
Queue #mv per MB 90.3 95.8 94.0

TABLE V
PERFORMANCE (PERCENTAGE) OF THE DETECTION ALGORITHM FOR THE

STEREOSCOPIC CASE, ONE FRAME AT A TIME. IN BRACKETS:
DIFFERENCE WITH RESPECT TO THE MONOSCOPIC CASE.

Event Accuracy Precision Recall

Moving 96.8 (+1.0) 75.8 (-15.5) 89.4 (+17.5)
Lane change 98.0 (+1.9) 100 (+2.0) 98.0 (0.0)
Change direction 99.1 (+0.2) 100 (+0.1) 99.1 (0.0)
Queue 94.1 (+3.8) 97.3 (+1.5) 96.5 (+2.5)

the event with frame-level precision. Therefore, we considered

sets of five consecutive frames by combining the annotation

value with a majority decision as well as averaging the feature

values. Thus the same number of features is retained and the

complexity of the training and detection phase is not increased.

Considering more than one frame at a time creates an intrinsic

algorithmic delay in detecting the events, which is however

very limited (i.e., 166.6 ms for 5 frames at 30 fps) and it

can probably be considered acceptable for many applications.

Table VI and VII report the results for both the case of

monoscopic and stereoscopic video. They further improve with

respect to the previous results that consider frames in isolation.

However, some exceptions may exist, for instance in the case

of the lane change. Therefore, for these cases alternative

approaches could be pursued, for instance the analysis could

be done one frame at a time and then some postprocessing on

the result of the detection could be performed. For instance,

sudden changes in the result of the event detection could be

filtered considering past decisions, avoiding isolated changes

for single frames. However, the results reported here, without

postprocessing, allow to better appreciate the capabilities of

the proposed system.

VI. CONCLUSION

This work presented a driving event detection algorithm

based on the side information available from video compres-

sion algorithms run on both monoscopic and stereoscopic

videos of the road as captured through the windscreen of a

car. First, a set of interesting and easy-to-extract features has

been identified in the side information. Then, by means of

the mutual information values, the set of features has been

reduced by selecting the most suitable ones for the specific

events of interest. An SVM-based detection algorithm has been

designed and trained on a set of video sequences comprising

hundreds of thousand of frames where the events have been

provided by means of manual annotation performed by a

TABLE VI
PERFORMANCE (PERCENTAGE) OF THE DETECTION ALGORITHM FOR THE

MONOSCOPIC CASE, FIVE FRAMES AT A TIME. IN BRACKETS:
DIFFERENCE WITH RESPECT TO ONE FRAME AT A TIME.

Event Accuracy Precision Recall

Moving 94.6 (-0.8) 96.0 (+4.7) 64.6 (-7.4)
Lane change 98.3 (+2.2) 99.4 (+1.4) 98.0 (0.0)
Change direction 98.9 (+0.0) 99.8 (-0.1) 99.1 (0.0)
Queue 93.2 (+2.9) 99.1 (+3.3) 94.0 (0.0)

TABLE VII
PERFORMANCE (PERCENTAGE) OF THE DETECTION ALGORITHM FOR THE

STEREOSCOPIC CASE, FIVE FRAMES AT A TIME. IN BRACKETS:
DIFFERENCE WITH RESPECT TO MONOSCOPIC CASE.

Event Accuracy Precision Recall

Moving 97.8 (+3.2) 82.8 (-13.2) 93.4 (+28.8)
Lane change 87.6 (-9.7) 89.1 (-10.3) 98.1 (+0.1)
Change direction 99.1 (+0.2) 100 (+0.2) 99.1 (0.0)
Queue 93.7 (+0.5) 99.6 (+0.5) 94.1 (+0.1)

human operator. Results show that the detection algorithm

achieves a very good identification rate for several events

of interest. Moreover, the use of a 3D video provided by a

stereoscopic camera significantly improves the performance

of the detection algorithm. Future work will be devoted to

investigate the possibility to identify more events related to

object movements and to use more features at the same time.
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